Nuprl Lemma : length-insert-int

[T:Type]. ∀[x:T]. ∀[l:T List].  (||insert-int(x;l)|| (||l|| 1) ∈ ℤsupposing T ⊆r ℤ


Proof




Definitions occuring in Statement :  length: ||as|| insert-int: insert-int(x;l) list: List uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] add: m natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q insert-int: insert-int(x;l) all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] has-value: (a)↓ subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A
Lemmas referenced :  list_induction equal_wf length_wf insert-int_wf list_wf list_ind_nil_lemma length_of_nil_lemma length_of_cons_lemma list_ind_cons_lemma value-type-has-value list-value-type le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot le_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination because_Cache sqequalRule lambdaEquality intEquality cumulativity hypothesisEquality independent_isectElimination hypothesis addEquality natural_numberEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality lambdaFormation rename callbyvalueReduce applyEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination dependent_pairFormation promote_hyp instantiate axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[l:T  List].    (||insert-int(x;l)||  =  (||l||  +  1))  supposing  T  \msubseteq{}r  \mBbbZ{}



Date html generated: 2017_04_14-AM-08_36_08
Last ObjectModification: 2017_02_27-PM-03_28_33

Theory : list_0


Home Index