Nuprl Lemma : length-insert-int
∀[T:Type]. ∀[x:T]. ∀[l:T List].  (||insert-int(x;l)|| = (||l|| + 1) ∈ ℤ) supposing T ⊆r ℤ
Proof
Definitions occuring in Statement : 
length: ||as||
, 
insert-int: insert-int(x;l)
, 
list: T List
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
insert-int: insert-int(x;l)
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
has-value: (a)↓
, 
subtype_rel: A ⊆r B
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
Lemmas referenced : 
list_induction, 
equal_wf, 
length_wf, 
insert-int_wf, 
list_wf, 
list_ind_nil_lemma, 
length_of_nil_lemma, 
length_of_cons_lemma, 
list_ind_cons_lemma, 
value-type-has-value, 
list-value-type, 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
le_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
intEquality, 
cumulativity, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
addEquality, 
natural_numberEquality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
rename, 
callbyvalueReduce, 
applyEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[l:T  List].    (||insert-int(x;l)||  =  (||l||  +  1))  supposing  T  \msubseteq{}r  \mBbbZ{}
Date html generated:
2017_04_14-AM-08_36_08
Last ObjectModification:
2017_02_27-PM-03_28_33
Theory : list_0
Home
Index