Nuprl Lemma : length-insert-int
∀[T:Type]. ∀[x:T]. ∀[l:T List].  (||insert-int(x;l)|| = (||l|| + 1) ∈ ℤ) supposing T ⊆r ℤ
Proof
Definitions occuring in Statement : 
length: ||as||, 
insert-int: insert-int(x;l), 
list: T List, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
add: n + m, 
natural_number: $n, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
insert-int: insert-int(x;l), 
all: ∀x:A. B[x], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
top: Top, 
so_apply: x[s1;s2;s3], 
has-value: (a)↓, 
subtype_rel: A ⊆r B, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A
Lemmas referenced : 
list_induction, 
equal_wf, 
length_wf, 
insert-int_wf, 
list_wf, 
list_ind_nil_lemma, 
length_of_nil_lemma, 
length_of_cons_lemma, 
list_ind_cons_lemma, 
value-type-has-value, 
list-value-type, 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
le_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
intEquality, 
cumulativity, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
addEquality, 
natural_numberEquality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
rename, 
callbyvalueReduce, 
applyEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[l:T  List].    (||insert-int(x;l)||  =  (||l||  +  1))  supposing  T  \msubseteq{}r  \mBbbZ{}
Date html generated:
2017_04_14-AM-08_36_08
Last ObjectModification:
2017_02_27-PM-03_28_33
Theory : list_0
Home
Index