Nuprl Lemma : list_acc_nil_red_lemma
∀b,f:Top. (list-accum(t,a,h.f[t;a;h];b;[]) ~ b)
Proof
Definitions occuring in Statement :
list-accum: list-accum(t,a,h.f[t; a; h];b;L)
,
nil: []
,
top: Top
,
so_apply: x[s1;s2;s3]
,
all: ∀x:A. B[x]
,
sqequal: s ~ t
Definitions unfolded in proof :
list-accum: list-accum(t,a,h.f[t; a; h];b;L)
,
nil: []
,
it: ⋅
,
all: ∀x:A. B[x]
,
member: t ∈ T
Lemmas referenced :
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
lambdaFormation,
cut,
introduction,
extract_by_obid,
hypothesis
Latex:
\mforall{}b,f:Top. (list-accum(t,a,h.f[t;a;h];b;[]) \msim{} b)
Date html generated:
2018_05_21-PM-00_19_10
Last ObjectModification:
2018_05_19-AM-06_59_06
Theory : list_0
Home
Index