Step
*
1
1
2
of Lemma
listify_select_id
1. T : Type
2. n : ℕ
3. u : T
4. v : T List
5. ∀j:ℕ. (((j + ||v||) = n ∈ ℤ)
⇒ (listify(λi.v[i - j];j;n) = v ∈ (T List)))
6. j : ℕ
7. (j + ||v|| + 1) = n ∈ ℤ
⊢ listify(λi.[u / v][i - j];j;n) = [u / v] ∈ (T List)
BY
{ (RecCaseSplit `listify` THENA Auto{1,3}-1) }
1
.....truecase.....
1. T : Type
2. n : ℕ
3. u : T
4. v : T List
5. ∀j:ℕ. (((j + ||v||) = n ∈ ℤ)
⇒ (listify(λi.v[i - j];j;n) = v ∈ (T List)))
6. j : ℕ
7. (j + ||v|| + 1) = n ∈ ℤ
8. n ≤ j
⊢ [] = [u / v] ∈ (T List)
2
1. T : Type
2. n : ℕ
3. u : T
4. v : T List
5. ∀j:ℕ. (((j + ||v||) = n ∈ ℤ)
⇒ (listify(λi.v[i - j];j;n) = v ∈ (T List)))
6. j : ℕ
7. (j + ||v|| + 1) = n ∈ ℤ
8. j < n
⊢ [[u / v][j - j] / listify(λi.[u / v][i - j];j + 1;n)] = [u / v] ∈ (T List)
Latex:
Latex:
1. T : Type
2. n : \mBbbN{}
3. u : T
4. v : T List
5. \mforall{}j:\mBbbN{}. (((j + ||v||) = n) {}\mRightarrow{} (listify(\mlambda{}i.v[i - j];j;n) = v))
6. j : \mBbbN{}
7. (j + ||v|| + 1) = n
\mvdash{} listify(\mlambda{}i.[u / v][i - j];j;n) = [u / v]
By
Latex:
(RecCaseSplit `listify` THENA Auto\{1,3\}-1)
Home
Index