Nuprl Lemma : listify_select_id

[T:Type]. ∀[as:T List].  ((λi:ℕ||as||. as[i])[ℕ||as||] as ∈ (T List))


Proof




Definitions occuring in Statement :  select: L[n] length: ||as|| listify: listify(f;m;n) list: List tlambda: λx:T. b[x] int_seg: {i..j-} uall: [x:A]. B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q prop: nat: so_lambda: λ2x.t[x] int_seg: {i..j-} uimplies: supposing a exists: x:A. B[x] subtype_rel: A ⊆B so_apply: x[s] select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] lelt: i ≤ j < k and: P ∧ Q subtract: m sq_type: SQType(T) guard: {T} le: A ≤ B uiff: uiff(P;Q) nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True not: ¬A false: False decidable: Dec(P) or: P ∨ Q listify: listify(f;m;n) bool: 𝔹 unit: Unit btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b ge: i ≥  iff: ⇐⇒ Q rev_implies:  Q sq_stable: SqStable(P) cand: c∧ B tlambda: λx:T. b[x]
Lemmas referenced :  list_wf equal_wf length_wf nat_wf list_induction all_wf listify_wf select_wf subtract_wf non_neg_length length_wf_nat set_subtype_base le_wf int_subtype_base int_seg_wf length_of_nil_lemma stuck-spread base_wf length_of_cons_lemma minus-one-mul add-associates add-mul-special add-swap two-mul add-commutes mul-distributes-right zero-mul zero-add add-zero one-mul subtype_base_sq mul-distributes mul-associates add-is-int-iff add_functionality_wrt_le le_reflexive minus-one-mul-top not-le-2 minus-zero omega-shadow less_than_wf mul-swap mul-commutes le-add-cancel-alt less-iff-le not-lt-2 minus-add le-add-cancel int_seg_properties nat_properties decidable__le decidable__lt le_int_wf bool_wf eqtt_to_assert assert_of_le_int nil_wf eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot condition-implies-le le_antisymmetry_iff assert_wf lt_int_wf bnot_wf uiff_transitivity assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int subtype_rel-equal minus-minus cons_wf squash_wf true_wf select-cons-hd false_wf select_cons_tl iff_weakening_equal sq_stable__le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache universeEquality lambdaFormation intEquality addEquality setElimination rename lambdaEquality functionEquality independent_isectElimination dependent_pairFormation sqequalIntensionalEquality applyEquality natural_numberEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination productElimination promote_hyp baseClosed voidElimination voidEquality multiplyEquality minusEquality instantiate baseApply closedConclusion dependent_set_memberEquality independent_pairFormation imageMemberEquality unionElimination equalityElimination applyLambdaEquality imageElimination hyp_replacement functionExtensionality productEquality

Latex:
\mforall{}[T:Type].  \mforall{}[as:T  List].    ((\mlambda{}i:\mBbbN{}||as||.  as[i])[\mBbbN{}||as||]  =  as)



Date html generated: 2017_04_14-AM-08_39_02
Last ObjectModification: 2017_02_27-PM-03_30_40

Theory : list_0


Home Index