Nuprl Lemma : listify_wf

[T:Type]. ∀[m,n:ℤ]. ∀[f:{m..n-} ⟶ T].  (listify(f;m;n) ∈ List)


Proof




Definitions occuring in Statement :  listify: listify(f;m;n) list: List int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] gt: i > j decidable: Dec(P) or: P ∨ Q true: True less_than': less_than'(a;b) le: A ≤ B top: Top subtype_rel: A ⊆B subtract: m lelt: i ≤ j < k int_seg: {i..j-} not: ¬A false: False assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) prop: exists: x:A. B[x] bfalse: ff uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 implies:  Q listify: listify(f;m;n) int_lower: {...i} nat: ge: i ≥  iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) squash: T nat_plus: + less_than: a < b
Lemmas referenced :  int_seg_wf istype-int decidable__lt lelt_wf le-add-cancel add-associates add_functionality_wrt_le less-iff-le add-commutes minus-one-mul-top add-swap minus-one-mul minus-add condition-implies-le not-le-2 le_reflexive cons_wf le_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert nil_wf assert_of_le_int eqtt_to_assert bool_wf le_int_wf int_lower_wf not_wf gt_wf nat_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf subtract_wf decidable__le istype-false not-ge-2 zero-add istype-void minus-minus add-zero decidable__int_equal set_subtype_base int_subtype_base le_antisymmetry_iff not-lt-2 le-add-cancel-alt subtype_rel_self int_seg_properties not-equal-2 sq_stable__le add-mul-special zero-mul equal-wf-T-base assert_wf lt_int_wf bnot_wf uiff_transitivity assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int subtract_nat_wf le-add-cancel2 subtype_rel_function int_seg_subtype one-mul two-mul mul-distributes-right omega-shadow mul-distributes mul-swap mul-associates mul-commutes int_lower_properties add_nat_wf not-gt-2
Rules used in proof :  Error :functionIsType,  Error :universeIsType,  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache Error :inhabitedIsType,  universeEquality Error :isect_memberFormation_alt,  sqequalRule axiomEquality equalityTransitivity equalitySymmetry Error :isect_memberEquality_alt,  dependent_functionElimination unionElimination minusEquality intEquality voidEquality isect_memberEquality lambdaEquality natural_numberEquality addEquality independent_pairFormation dependent_set_memberEquality functionExtensionality applyEquality voidElimination independent_functionElimination instantiate promote_hyp dependent_pairFormation cumulativity independent_isectElimination productElimination equalityElimination lambdaFormation Error :lambdaFormation_alt,  setElimination rename intWeakElimination Error :lambdaEquality_alt,  Error :dependent_set_memberEquality_alt,  hypothesis_subsumption imageMemberEquality baseClosed imageElimination multiplyEquality Error :equalityIsType1

Latex:
\mforall{}[T:Type].  \mforall{}[m,n:\mBbbZ{}].  \mforall{}[f:\{m..n\msupminus{}\}  {}\mrightarrow{}  T].    (listify(f;m;n)  \mmember{}  T  List)



Date html generated: 2019_06_20-PM-00_38_26
Last ObjectModification: 2018_10_03-PM-03_01_50

Theory : list_0


Home Index