Step
*
1
of Lemma
apply-alist-inl
1. [A] : Type
2. [T] : Type
3. eq : EqDecider(T)
4. x : T
5. L : (T × A) List
6. (↑isl(apply-alist(eq;L;x)))
⇒ (x ∈ map(λp.(fst(p));L))
7. (↑isl(apply-alist(eq;L;x)))
⇐ (x ∈ map(λp.(fst(p));L))
8. z : A
9. apply-alist(eq;L;x) = (inl z) ∈ (A?)
10. (<x, outl(apply-alist(eq;L;x))> ∈ L)
⊢ (<x, z> ∈ L)
BY
{ ((RWO "-2" (-1) THENA Auto) THEN Reduce -1 THEN Auto) }
Latex:
Latex:
1. [A] : Type
2. [T] : Type
3. eq : EqDecider(T)
4. x : T
5. L : (T \mtimes{} A) List
6. (\muparrow{}isl(apply-alist(eq;L;x))) {}\mRightarrow{} (x \mmember{} map(\mlambda{}p.(fst(p));L))
7. (\muparrow{}isl(apply-alist(eq;L;x))) \mLeftarrow{}{} (x \mmember{} map(\mlambda{}p.(fst(p));L))
8. z : A
9. apply-alist(eq;L;x) = (inl z)
10. (<x, outl(apply-alist(eq;L;x))> \mmember{} L)
\mvdash{} (<x, z> \mmember{} L)
By
Latex:
((RWO "-2" (-1) THENA Auto) THEN Reduce -1 THEN Auto)
Home
Index