Nuprl Lemma : apply-alist-inl
∀[A,T:Type].  ∀eq:EqDecider(T). ∀x:T. ∀L:(T × A) List. ∀z:A.  ((apply-alist(eq;L;x) = (inl z) ∈ (A?)) ⇒ (<x, z> ∈ L))
Proof
Definitions occuring in Statement : 
apply-alist: apply-alist(eq;L;x), 
l_member: (x ∈ l), 
list: T List, 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
unit: Unit, 
pair: <a, b>, 
product: x:A × B[x], 
inl: inl x, 
union: left + right, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
uimplies: b supposing a, 
isl: isl(x), 
sq_type: SQType(T), 
guard: {T}, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
squash: ↓T, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
outl: outl(x)
Lemmas referenced : 
isl-apply-alist, 
btrue_wf, 
bfalse_wf, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
unit_wf2, 
apply-alist_wf, 
list_wf, 
deq_wf, 
istype-universe, 
l_member_wf, 
squash_wf, 
true_wf, 
outl_wf, 
assert_wf, 
isl_wf, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation_alt, 
dependent_functionElimination, 
productElimination, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
productIsType, 
equalityIstype, 
inhabitedIsType, 
applyLambdaEquality, 
setElimination, 
rename, 
unionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
natural_numberEquality, 
unionIsType, 
universeIsType, 
inlEquality_alt, 
productEquality, 
universeEquality, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
independent_pairEquality, 
because_Cache, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[A,T:Type].
    \mforall{}eq:EqDecider(T).  \mforall{}x:T.  \mforall{}L:(T  \mtimes{}  A)  List.  \mforall{}z:A.    ((apply-alist(eq;L;x)  =  (inl  z))  {}\mRightarrow{}  (<x,  z>  \mmember{}  L))
Date html generated:
2020_05_19-PM-09_41_51
Last ObjectModification:
2020_01_26-PM-10_42_18
Theory : list_1
Home
Index