Step
*
of Lemma
assert-exists_sublist
∀[T:Type]. ∀L:T List. ∀P:(T List) ⟶ 𝔹. (↑exists_sublist(L;P)
⇐⇒ ∃LL:T List. (LL ⊆ L ∧ (↑(P LL))))
BY
{ (Intro THEN InductionOnList THEN RecUnfold `exists_sublist` 0 THEN Reduce 0) }
1
1. [T] : Type
⊢ ∀P:(T List) ⟶ 𝔹. (↑(P [])
⇐⇒ ∃LL:T List. (LL ⊆ [] ∧ (↑(P LL))))
2
1. [T] : Type
2. u : T
3. v : T List
4. ∀P:(T List) ⟶ 𝔹. (↑exists_sublist(v;P)
⇐⇒ ∃LL:T List. (LL ⊆ v ∧ (↑(P LL))))
⊢ ∀P:(T List) ⟶ 𝔹
(↑(exists_sublist(v;P) ∨bexists_sublist(v;λl.(P [u / l])))
⇐⇒ ∃LL:T List. (LL ⊆ [u / v] ∧ (↑(P LL))))
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}L:T List. \mforall{}P:(T List) {}\mrightarrow{} \mBbbB{}. (\muparrow{}exists\_sublist(L;P) \mLeftarrow{}{}\mRightarrow{} \mexists{}LL:T List. (LL \msubseteq{} L \mwedge{} (\muparrow{}(P LL))))
By
Latex:
(Intro THEN InductionOnList THEN RecUnfold `exists\_sublist` 0 THEN Reduce 0)
Home
Index