Nuprl Lemma : assert-exists_sublist
∀[T:Type]. ∀L:T List. ∀P:(T List) ⟶ 𝔹.  (↑exists_sublist(L;P) 
⇐⇒ ∃LL:T List. (LL ⊆ L ∧ (↑(P LL))))
Proof
Definitions occuring in Statement : 
exists_sublist: exists_sublist(L;P)
, 
sublist: L1 ⊆ L2
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
exists_sublist: exists_sublist(L;P)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
or: P ∨ Q
, 
cons: [a / b]
, 
sq_type: SQType(T)
, 
assert: ↑b
, 
true: True
Lemmas referenced : 
list_induction, 
all_wf, 
list_wf, 
bool_wf, 
iff_wf, 
assert_wf, 
exists_sublist_wf, 
exists_wf, 
sublist_wf, 
null_nil_lemma, 
null_cons_lemma, 
spread_cons_lemma, 
nil_wf, 
nil-sublist, 
assert_witness, 
sublist_nil, 
assert_functionality_wrt_uiff, 
or_wf, 
cons_wf, 
assert_of_bor, 
bor_wf, 
sublist_tl2, 
cons_sublist_cons, 
list-cases, 
product_subtype_list, 
and_wf, 
equal_wf, 
assert_elim, 
subtype_base_sq, 
bool_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
cumulativity, 
hypothesis, 
functionExtensionality, 
applyEquality, 
productEquality, 
independent_functionElimination, 
rename, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
universeEquality, 
independent_pairFormation, 
dependent_pairFormation, 
productElimination, 
independent_isectElimination, 
equalitySymmetry, 
unionElimination, 
addLevel, 
allFunctionality, 
impliesFunctionality, 
orFunctionality, 
orLevelFunctionality, 
inlFormation, 
promote_hyp, 
hypothesis_subsumption, 
inrFormation, 
dependent_set_memberEquality, 
applyLambdaEquality, 
setElimination, 
equalityTransitivity, 
levelHypothesis, 
instantiate, 
natural_numberEquality
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}P:(T  List)  {}\mrightarrow{}  \mBbbB{}.    (\muparrow{}exists\_sublist(L;P)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}LL:T  List.  (LL  \msubseteq{}  L  \mwedge{}  (\muparrow{}(P  LL))))
Date html generated:
2018_05_21-PM-00_34_15
Last ObjectModification:
2017_10_12-AM-10_13_20
Theory : list_1
Home
Index