Nuprl Lemma : exists_sublist_wf

[T:Type]. ∀[P:(T List) ⟶ 𝔹]. ∀[L:T List].  (exists_sublist(L;P) ∈ 𝔹)


Proof




Definitions occuring in Statement :  exists_sublist: exists_sublist(L;P) list: List bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q exists_sublist: exists_sublist(L;P) ifthenelse: if then else fi  btrue: tt cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) bfalse: ff
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list_wf list-cases null_nil_lemma nil_wf product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int null_cons_lemma bor_wf cons_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation axiomEquality equalityTransitivity equalitySymmetry because_Cache cumulativity applyEquality unionElimination functionExtensionality promote_hyp hypothesis_subsumption productElimination applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:(T  List)  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].    (exists\_sublist(L;P)  \mmember{}  \mBbbB{})



Date html generated: 2018_05_21-PM-00_33_53
Last ObjectModification: 2017_10_12-AM-10_03_26

Theory : list_1


Home Index