Nuprl Lemma : sublist_nil
∀[T:Type]. ∀L:T List. (L ⊆ [] 
⇐⇒ L = [] ∈ (T List))
Proof
Definitions occuring in Statement : 
sublist: L1 ⊆ L2
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
sublist_wf, 
nil_wf, 
equal-wf-T-base, 
list_wf, 
length_zero, 
length_sublist, 
length_of_nil_lemma, 
non_neg_length, 
decidable__equal_int, 
length_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
nil-sublist
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
baseClosed, 
universeEquality, 
productElimination, 
independent_isectElimination, 
because_Cache, 
sqequalRule, 
dependent_functionElimination, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
hyp_replacement, 
equalitySymmetry, 
Error :applyLambdaEquality
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  (L  \msubseteq{}  []  \mLeftarrow{}{}\mRightarrow{}  L  =  [])
Date html generated:
2016_10_21-AM-10_02_01
Last ObjectModification:
2016_07_12-AM-05_23_43
Theory : list_1
Home
Index