Step
*
of Lemma
bl-exists-as-accum
∀[T:Type]. ∀[L:T List]. ∀[P:T ⟶ 𝔹].
((∃x∈L.P[x])_b ~ accumulate (with value p and list item x):
p ∨bP[x]
over list:
L
with starting value:
ff))
BY
{ (Auto
THEN Unfold `bl-exists` 0
THEN RWO "reduce-as-accum" 0
THEN Reduce 0
THEN Auto
THEN Try ((AutoBoolCase ⌜P[y]⌝⋅ THEN AutoBoolCase ⌜P[x]⌝⋅))
THEN EqCD
THEN Auto) }
1
.....subterm..... T:t
1:n
1. T : Type
2. L : T List
3. P : T ⟶ 𝔹
4. p : 𝔹
5. x : T
⊢ P[x] ∨bp = p ∨bP[x]
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[L:T List]. \mforall{}[P:T {}\mrightarrow{} \mBbbB{}].
((\mexists{}x\mmember{}L.P[x])\_b \msim{} accumulate (with value p and list item x):
p \mvee{}\msubb{}P[x]
over list:
L
with starting value:
ff))
By
Latex:
(Auto
THEN Unfold `bl-exists` 0
THEN RWO "reduce-as-accum" 0
THEN Reduce 0
THEN Auto
THEN Try ((AutoBoolCase \mkleeneopen{}P[y]\mkleeneclose{}\mcdot{} THEN AutoBoolCase \mkleeneopen{}P[x]\mkleeneclose{}\mcdot{}))
THEN EqCD
THEN Auto)
Home
Index