Nuprl Lemma : bl-exists-as-accum
∀[T:Type]. ∀[L:T List]. ∀[P:T ⟶ 𝔹].
  ((∃x∈L.P[x])_b ~ accumulate (with value p and list item x):
                    p ∨bP[x]
                   over list:
                     L
                   with starting value:
                    ff))
Proof
Definitions occuring in Statement : 
bl-exists: (∃x∈L.P[x])_b
, 
list_accum: list_accum, 
list: T List
, 
bor: p ∨bq
, 
bfalse: ff
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
bl-exists: (∃x∈L.P[x])_b
, 
squash: ↓T
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
top: Top
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
false: False
, 
bor: p ∨bq
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
equal_wf, 
squash_wf, 
true_wf, 
reduce-as-accum, 
bor_wf, 
eqtt_to_assert, 
testxxx_lemma, 
bor_tt_simp, 
btrue_wf, 
iff_weakening_equal, 
eqff_to_assert, 
bool_cases_sqequal, 
assert-bnot, 
bfalse_wf, 
list_accum_wf, 
list_wf, 
bor_ff_simp
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesis, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
functionExtensionality, 
sqequalRule, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
dependent_pairFormation, 
promote_hyp, 
universeEquality, 
sqequalAxiom, 
functionEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].
    ((\mexists{}x\mmember{}L.P[x])\_b  \msim{}  accumulate  (with  value  p  and  list  item  x):
                                        p  \mvee{}\msubb{}P[x]
                                      over  list:
                                          L
                                      with  starting  value:
                                        ff))
Date html generated:
2017_04_17-AM-08_03_30
Last ObjectModification:
2017_02_27-PM-04_33_38
Theory : list_1
Home
Index