Step
*
2
1
1
of Lemma
cons-sub-co-list-cons
1. T : Type
2. x1 : T
3. x2 : T
4. L1 : colist(T)
5. L2 : colist(T)
6. x1 = x2 ∈ T
7. ns : colist(ℕ)
8. L1 = L2@ns ∈ colist(T)
⊢ [x1 / L1] = [x2 / L2]@[0 / ns] ∈ colist(T)
BY
{ (Unfold `co-cons` 0 THEN Fold `cons` 0 THEN Unfold `list-at` 0 THEN Reduce 0) }
1
1. T : Type
2. x1 : T
3. x2 : T
4. L1 : colist(T)
5. L2 : colist(T)
6. x1 = x2 ∈ T
7. ns : colist(ℕ)
8. L1 = L2@ns ∈ colist(T)
⊢ [x1 / L1] = [x2 / L2@ns] ∈ colist(T)
Latex:
Latex:
1. T : Type
2. x1 : T
3. x2 : T
4. L1 : colist(T)
5. L2 : colist(T)
6. x1 = x2
7. ns : colist(\mBbbN{})
8. L1 = L2@ns
\mvdash{} [x1 / L1] = [x2 / L2]@[0 / ns]
By
Latex:
(Unfold `co-cons` 0 THEN Fold `cons` 0 THEN Unfold `list-at` 0 THEN Reduce 0)
Home
Index