Step
*
1
1
1
2
of Lemma
cons_sublist_cons
1. [T] : Type
2. x1 : T
3. x2 : T
4. L1 : T List
5. L2 : T List
6. f : ℕ||L1|| + 1 ⟶ ℕ||L2|| + 1
7. increasing(f;||L1|| + 1)
8. ∀j:ℕ||L1|| + 1. ([x1 / L1][j] = [x2 / L2][f j] ∈ T)
9. [x1 / L1][0] = [x2 / L2][f 0] ∈ T
10. (f 0) = 0 ∈ ℤ
11. x1 = x2 ∈ T
⊢ ∃f:ℕ||L1|| ⟶ ℕ||L2||. (increasing(f;||L1||) ∧ (∀j:ℕ||L1||. (L1[j] = L2[f j] ∈ T)))
BY
{ ((InstConcl [λi.((f (i + 1)) - 1)] THEN Reduce 0) THEN Auto') }
1
1. T : Type
2. x1 : T
3. x2 : T
4. L1 : T List
5. L2 : T List
6. f : ℕ||L1|| + 1 ⟶ ℕ||L2|| + 1
7. increasing(f;||L1|| + 1)
8. ∀j:ℕ||L1|| + 1. ([x1 / L1][j] = [x2 / L2][f j] ∈ T)
9. [x1 / L1][0] = [x2 / L2][f 0] ∈ T
10. (f 0) = 0 ∈ ℤ
11. x1 = x2 ∈ T
12. i : ℕ||L1||
⊢ (f (i + 1)) - 1 ∈ ℕ||L2||
2
1. [T] : Type
2. x1 : T
3. x2 : T
4. L1 : T List
5. L2 : T List
6. f : ℕ||L1|| + 1 ⟶ ℕ||L2|| + 1
7. increasing(f;||L1|| + 1)
8. ∀j:ℕ||L1|| + 1. ([x1 / L1][j] = [x2 / L2][f j] ∈ T)
9. [x1 / L1][0] = [x2 / L2][f 0] ∈ T
10. (f 0) = 0 ∈ ℤ
11. x1 = x2 ∈ T
⊢ increasing(λi.((f (i + 1)) - 1);||L1||)
3
1. T : Type
2. x1 : T
3. x2 : T
4. L1 : T List
5. L2 : T List
6. f : ℕ||L1|| + 1 ⟶ ℕ||L2|| + 1
7. increasing(f;||L1|| + 1)
8. ∀j:ℕ||L1|| + 1. ([x1 / L1][j] = [x2 / L2][f j] ∈ T)
9. [x1 / L1][0] = [x2 / L2][f 0] ∈ T
10. (f 0) = 0 ∈ ℤ
11. x1 = x2 ∈ T
12. increasing(λi.((f (i + 1)) - 1);||L1||)
13. j : ℕ||L1||
⊢ L1[j] = L2[(f (j + 1)) - 1] ∈ T
Latex:
Latex:
1.  [T]  :  Type
2.  x1  :  T
3.  x2  :  T
4.  L1  :  T  List
5.  L2  :  T  List
6.  f  :  \mBbbN{}||L1||  +  1  {}\mrightarrow{}  \mBbbN{}||L2||  +  1
7.  increasing(f;||L1||  +  1)
8.  \mforall{}j:\mBbbN{}||L1||  +  1.  ([x1  /  L1][j]  =  [x2  /  L2][f  j])
9.  [x1  /  L1][0]  =  [x2  /  L2][f  0]
10.  (f  0)  =  0
11.  x1  =  x2
\mvdash{}  \mexists{}f:\mBbbN{}||L1||  {}\mrightarrow{}  \mBbbN{}||L2||.  (increasing(f;||L1||)  \mwedge{}  (\mforall{}j:\mBbbN{}||L1||.  (L1[j]  =  L2[f  j])))
By
Latex:
((InstConcl  [\mlambda{}i.((f  (i  +  1))  -  1)]  THEN  Reduce  0)  THEN  Auto')
Home
Index