Step
*
2
of Lemma
decidable__l_disjoint
1. [A] : Type
2. ∀x,y:A. Dec(x = y ∈ A)@i
3. u : A@i
4. v : A List@i
5. ∀L2:A List. Dec(l_disjoint(A;v;L2))@i
⊢ ∀L2:A List. Dec(l_disjoint(A;[u / v];L2))
BY
{ Subst ⌜[u / v] ~ [u] @ v⌝ 0⋅ }
1
.....equality.....
1. A : Type
2. ∀x,y:A. Dec(x = y ∈ A)@i
3. u : A@i
4. v : A List@i
5. ∀L2:A List. Dec(l_disjoint(A;v;L2))@i
⊢ [u / v] ~ [u] @ v
2
1. [A] : Type
2. ∀x,y:A. Dec(x = y ∈ A)@i
3. u : A@i
4. v : A List@i
5. ∀L2:A List. Dec(l_disjoint(A;v;L2))@i
⊢ ∀L2:A List. Dec(l_disjoint(A;[u] @ v;L2))
Latex:
Latex:
1. [A] : Type
2. \mforall{}x,y:A. Dec(x = y)@i
3. u : A@i
4. v : A List@i
5. \mforall{}L2:A List. Dec(l\_disjoint(A;v;L2))@i
\mvdash{} \mforall{}L2:A List. Dec(l\_disjoint(A;[u / v];L2))
By
Latex:
Subst \mkleeneopen{}[u / v] \msim{} [u] @ v\mkleeneclose{} 0\mcdot{}
Home
Index