Nuprl Lemma : decidable__l_disjoint

[A:Type]. ((∀x,y:A.  Dec(x y ∈ A))  (∀L1,L2:A List.  Dec(l_disjoint(A;L1;L2))))


Proof




Definitions occuring in Statement :  l_disjoint: l_disjoint(T;l1;l2) list: List decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: decidable: Dec(P) or: P ∨ Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q uiff: uiff(P;Q) uimplies: supposing a
Lemmas referenced :  list_induction all_wf list_wf decidable_wf l_disjoint_wf equal_wf l_disjoint_nil not_wf nil_wf list_ind_cons_lemma list_ind_nil_lemma append_wf cons_wf and_wf l_member_wf decidable__and2 decidable__not decidable__l_member decidable_functionality iff_weakening_uiff l_disjoint_append2 l_disjoint_singleton2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality hypothesis independent_functionElimination rename because_Cache dependent_functionElimination universeEquality inlFormation isect_memberEquality voidElimination voidEquality productElimination independent_pairFormation independent_isectElimination

Latex:
\mforall{}[A:Type].  ((\mforall{}x,y:A.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}L1,L2:A  List.    Dec(l\_disjoint(A;L1;L2))))



Date html generated: 2016_05_14-PM-02_22_19
Last ObjectModification: 2015_12_26-PM-04_27_09

Theory : list_1


Home Index