Nuprl Lemma : l_disjoint_singleton2

[T:Type]. ∀[a:T List]. ∀[x:T].  uiff(l_disjoint(T;[x];a);¬(x ∈ a))


Proof




Definitions occuring in Statement :  l_disjoint: l_disjoint(T;l1;l2) l_member: (x ∈ l) cons: [a b] nil: [] list: List uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a implies:  Q iff: ⇐⇒ Q not: ¬A false: False prop: rev_implies:  Q l_disjoint: l_disjoint(T;l1;l2) all: x:A. B[x]
Lemmas referenced :  l_disjoint_singleton iff_weakening_uiff l_disjoint_wf cons_wf nil_wf l_disjoint-symmetry l_member_wf and_wf not_wf uiff_wf list_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality addLevel productElimination independent_pairFormation introduction independent_isectElimination independent_functionElimination sqequalRule lambdaEquality dependent_functionElimination voidElimination cumulativity because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a:T  List].  \mforall{}[x:T].    uiff(l\_disjoint(T;[x];a);\mneg{}(x  \mmember{}  a))



Date html generated: 2016_05_14-AM-07_55_50
Last ObjectModification: 2015_12_26-PM-04_49_56

Theory : list_1


Home Index