Nuprl Lemma : l_disjoint-symmetry

[T:Type]. ∀[a,b:T List].  uiff(l_disjoint(T;b;a);l_disjoint(T;a;b))


Proof




Definitions occuring in Statement :  l_disjoint: l_disjoint(T;l1;l2) list: List uiff: uiff(P;Q) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a l_disjoint: l_disjoint(T;l1;l2) all: x:A. B[x] not: ¬A implies:  Q cand: c∧ B false: False prop:
Lemmas referenced :  and_wf l_member_wf l_disjoint_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalHypSubstitution lambdaFormation hypothesis dependent_functionElimination thin hypothesisEquality independent_functionElimination productElimination voidElimination lemma_by_obid isectElimination sqequalRule lambdaEquality because_Cache independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a,b:T  List].    uiff(l\_disjoint(T;b;a);l\_disjoint(T;a;b))



Date html generated: 2016_05_14-AM-07_55_41
Last ObjectModification: 2015_12_26-PM-04_49_39

Theory : list_1


Home Index