Nuprl Lemma : decidable__l_member

[A:Type]. ∀x:A. ((∀x,y:A.  Dec(x y ∈ A))  (∀L:A List. Dec((x ∈ L))))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) list: List decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop:
Lemmas referenced :  list_induction decidable_wf l_member_wf list_wf decidable_functionality nil_wf false_wf nil_member decidable__false cons_wf or_wf equal_wf cons_member decidable__or all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin lemma_by_obid sqequalHypSubstitution isectElimination because_Cache sqequalRule lambdaEquality hypothesisEquality hypothesis independent_functionElimination dependent_functionElimination productElimination rename universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}x:A.  ((\mforall{}x,y:A.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}L:A  List.  Dec((x  \mmember{}  L))))



Date html generated: 2016_05_14-AM-06_43_14
Last ObjectModification: 2015_12_26-PM-00_28_44

Theory : list_0


Home Index