Step
*
1
2
of Lemma
imax-list-append2
1. u : ℤ
2. v : ℤ List
3. ∀[bs:ℤ List]. (imax-list(v @ bs) = imax(imax-list(v);imax-list(bs)) ∈ ℤ) supposing (0 < ||bs|| and 0 < ||v||)
4. bs : ℤ List
5. 0 < ||v|| + 1
6. 0 < ||bs||
7. ¬0 < ||v||
⊢ imax-list([u / (v @ bs)]) = imax(imax-list([u / v]);imax-list(bs)) ∈ ℤ
BY
{ (DVar `v' THEN All Reduce THEN Try ((D (-1) THEN Complete (Auto')))) }
1
1. u : ℤ
2. ∀[bs:ℤ List]. (imax-list(bs) = imax(imax-list([]);imax-list(bs)) ∈ ℤ) supposing (0 < ||bs|| and 0 < 0)
3. bs : ℤ List
4. 0 < 1
5. 0 < ||bs||
6. ¬0 < 0
⊢ imax-list([u / bs]) = imax(u;imax-list(bs)) ∈ ℤ
Latex:
Latex:
1. u : \mBbbZ{}
2. v : \mBbbZ{} List
3. \mforall{}[bs:\mBbbZ{} List]
(imax-list(v @ bs) = imax(imax-list(v);imax-list(bs))) supposing (0 < ||bs|| and 0 < ||v||)
4. bs : \mBbbZ{} List
5. 0 < ||v|| + 1
6. 0 < ||bs||
7. \mneg{}0 < ||v||
\mvdash{} imax-list([u / (v @ bs)]) = imax(imax-list([u / v]);imax-list(bs))
By
Latex:
(DVar `v' THEN All Reduce THEN Try ((D (-1) THEN Complete (Auto'))))
Home
Index