Nuprl Lemma : imax-list-append2
∀[as,bs:ℤ List].  (imax-list(as @ bs) = imax(imax-list(as);imax-list(bs)) ∈ ℤ) supposing (0 < ||bs|| and 0 < ||as||)
Proof
Definitions occuring in Statement : 
imax-list: imax-list(L)
, 
length: ||as||
, 
append: as @ bs
, 
list: T List
, 
imax: imax(a;b)
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
append: as @ bs
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
false: False
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
imax-list: imax-list(L)
, 
combine-list: combine-list(x,y.f[x; y];L)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
cons: [a / b]
, 
nat_plus: ℕ+
, 
uiff: uiff(P;Q)
Lemmas referenced : 
list_induction, 
uall_wf, 
list_wf, 
isect_wf, 
less_than_wf, 
length_wf, 
equal-wf-base, 
list_subtype_base, 
int_subtype_base, 
length_of_nil_lemma, 
list_ind_nil_lemma, 
length_of_cons_lemma, 
list_ind_cons_lemma, 
decidable__lt, 
append_wf, 
length-append, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
imax-list_wf, 
equal_wf, 
imax_wf, 
iff_weakening_equal, 
imax_assoc, 
squash_wf, 
true_wf, 
imax-list-cons, 
list-cases, 
reduce_hd_cons_lemma, 
reduce_tl_cons_lemma, 
list_accum_nil_lemma, 
product_subtype_list, 
list_accum_cons_lemma, 
add_nat_plus, 
length_wf_nat, 
nat_plus_wf, 
nat_plus_properties, 
add-is-int-iff, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
intEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
natural_numberEquality, 
hypothesisEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
productElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
rename, 
addEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
independent_pairFormation, 
computeAll, 
imageMemberEquality, 
universeEquality, 
promote_hyp, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
applyLambdaEquality, 
setElimination, 
pointwiseFunctionality
Latex:
\mforall{}[as,bs:\mBbbZ{}  List].
    (imax-list(as  @  bs)  =  imax(imax-list(as);imax-list(bs)))  supposing  (0  <  ||bs||  and  0  <  ||as||)
Date html generated:
2017_04_17-AM-07_39_49
Last ObjectModification:
2017_02_27-PM-04_13_02
Theory : list_1
Home
Index