Step
*
2
of Lemma
iterate-rotate
1. n : ℕ
2. ∀x:ℕn. ∀k:ℕ. (x + k rem n ∈ ℕn)
⊢ ∀[k:ℕ]. (rot(n)^k = (λx.(x + k rem n)) ∈ (ℕn ⟶ ℕn))
BY
{ (PrimrecInductionOn `k' THEN Auto) }
1
1. n : ℕ
2. ∀x:ℕn. ∀k:ℕ. (x + k rem n ∈ ℕn)
3. k : ℤ
4. ¬k < 1
5. 0 < k
6. rot(n)^k - 1 = (λx.(x + (k - 1) rem n)) ∈ (ℕn ⟶ ℕn)
⊢ (rot(n) o rot(n)^k - 1) = (λx.(x + k rem n)) ∈ (ℕn ⟶ ℕn)
Latex:
Latex:
1. n : \mBbbN{}
2. \mforall{}x:\mBbbN{}n. \mforall{}k:\mBbbN{}. (x + k rem n \mmember{} \mBbbN{}n)
\mvdash{} \mforall{}[k:\mBbbN{}]. (rot(n)\^{}k = (\mlambda{}x.(x + k rem n)))
By
Latex:
(PrimrecInductionOn `k' THEN Auto)
Home
Index