Nuprl Lemma : iterate-rotate
∀[n,k:ℕ].  (rot(n)^k = (λx.(x + k rem n)) ∈ (ℕn ⟶ ℕn))
Proof
Definitions occuring in Statement : 
rotate: rot(n), 
fun_exp: f^n, 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
remainder: n rem m, 
add: n + m, 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
all: ∀x:A. B[x], 
le: A ≤ B, 
nat_plus: ℕ+, 
prop: ℙ, 
top: Top, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
uimplies: b supposing a, 
or: P ∨ Q, 
decidable: Dec(P), 
and: P ∧ Q, 
lelt: i ≤ j < k, 
ge: i ≥ j , 
guard: {T}, 
int_seg: {i..j-}, 
fun_exp: f^n, 
lt_int: i <z j, 
subtract: n - m, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
less_than: a < b, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
less_than': less_than'(a;b), 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
compose: f o g, 
rotate: rot(n), 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
istype-nat, 
int_seg_wf, 
nat_wf, 
lelt_wf, 
less_than_wf, 
less_than_transitivity2, 
le_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
int_seg_properties, 
nat_properties, 
rem_bounds_1, 
full-omega-unsat, 
intformless_wf, 
istype-int, 
istype-void, 
int_formula_prop_less_lemma, 
ge_wf, 
istype-less_than, 
primrec-unroll, 
decidable__lt, 
add-zero, 
equal_wf, 
rem_base_case, 
int_seg_subtype_nat, 
istype-false, 
iff_weakening_equal, 
trivial-equal, 
istype-le, 
subtract-1-ge-0, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
int_subtype_base, 
set_subtype_base, 
rotate_wf, 
compose_wf, 
equal-wf-T-base, 
subtract_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
itermSubtract_wf, 
intformeq_wf, 
decidable__equal_int, 
rem_add1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
Error :isect_memberEquality_alt, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
extract_by_obid, 
rename, 
setElimination, 
natural_numberEquality, 
lambdaFormation, 
because_Cache, 
computeAll, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_isectElimination, 
unionElimination, 
dependent_functionElimination, 
productElimination, 
addEquality, 
dependent_set_memberEquality, 
intWeakElimination, 
Error :lambdaFormation_alt, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
Error :universeIsType, 
Error :functionIsTypeImplies, 
Error :functionExtensionality_alt, 
imageElimination, 
Error :dependent_set_memberEquality_alt, 
applyEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
Error :productIsType, 
equalityElimination, 
Error :equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity, 
closedConclusion, 
baseApply, 
functionEquality, 
applyLambdaEquality, 
hyp_replacement, 
remainderEquality
Latex:
\mforall{}[n,k:\mBbbN{}].    (rot(n)\^{}k  =  (\mlambda{}x.(x  +  k  rem  n)))
Date html generated:
2019_06_20-PM-01_37_04
Last ObjectModification:
2019_03_06-AM-10_53_57
Theory : list_1
Home
Index