Nuprl Lemma : rem_add1

[i:ℕ]. ∀[n:ℕ+].  ((i rem n) if (i rem =z 1) then else (i rem n) fi  ∈ ℤ)


Proof




Definitions occuring in Statement :  nat_plus: + nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] remainder: rem m subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat_plus: + decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  nequal: a ≠ b ∈  uimplies: supposing a prop: implies:  Q not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) bfalse: ff uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 iff: ⇐⇒ Q rev_implies:  Q true: True squash: T less_than: a < b subtract: m
Lemmas referenced :  decidable__lt nat_plus_wf istype-nat int_subtype_base equal-wf-base int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf satisfiable-full-omega-tt nat_properties nat_plus_properties equal_wf one-rem le_wf false_wf rem_addition not_wf bnot_wf assert_wf equal-wf-T-base neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert assert_of_eq_int eqtt_to_assert bool_wf subtract_wf eq_int_wf equal-wf-base-T uiff_transitivity iff_transitivity iff_weakening_uiff assert_of_bnot decidable__equal_int int_term_value_subtract_lemma itermSubtract_wf rem_base_case iff_weakening_equal int_formula_prop_le_lemma int_formula_prop_not_lemma intformle_wf intformnot_wf decidable__le subtract-add-cancel rem_rec_case true_wf squash_wf int_term_value_add_lemma itermAdd_wf rem_bounds_1 less_than_wf rem-1 ifthenelse_wf add_functionality_wrt_eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis unionElimination universeIsType sqequalRule isect_memberEquality_alt isectElimination axiomEquality isectIsTypeImplies inhabitedIsType equalityTransitivity baseClosed applyEquality computeAll voidEquality voidElimination isect_memberEquality int_eqEquality lambdaEquality dependent_pairFormation because_Cache addEquality remainderEquality intEquality applyLambdaEquality hyp_replacement equalitySymmetry independent_isectElimination lambdaFormation independent_pairFormation dependent_set_memberEquality cumulativity independent_functionElimination instantiate promote_hyp productElimination equalityElimination impliesFunctionality imageMemberEquality universeEquality imageElimination lambdaFormation_alt addLevel

Latex:
\mforall{}[i:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    ((i  +  1  rem  n)  =  if  (i  rem  n  =\msubz{}  n  -  1)  then  0  else  (i  rem  n)  +  1  fi  )



Date html generated: 2020_05_19-PM-09_41_27
Last ObjectModification: 2019_12_31-PM-00_59_49

Theory : int_2


Home Index