Nuprl Lemma : rem_add1
∀[i:ℕ]. ∀[n:ℕ+].  ((i + 1 rem n) = if (i rem n =z n - 1) then 0 else (i rem n) + 1 fi  ∈ ℤ)
Proof
Definitions occuring in Statement : 
nat_plus: ℕ+
, 
nat: ℕ
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
uall: ∀[x:A]. B[x]
, 
remainder: n rem m
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
ge: i ≥ j 
, 
nequal: a ≠ b ∈ T 
, 
uimplies: b supposing a
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
assert: ↑b
, 
bnot: ¬bb
, 
guard: {T}
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
true: True
, 
squash: ↓T
, 
less_than: a < b
, 
subtract: n - m
Lemmas referenced : 
decidable__lt, 
nat_plus_wf, 
istype-nat, 
int_subtype_base, 
equal-wf-base, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties, 
nat_plus_properties, 
equal_wf, 
one-rem, 
le_wf, 
false_wf, 
rem_addition, 
not_wf, 
bnot_wf, 
assert_wf, 
equal-wf-T-base, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
subtract_wf, 
eq_int_wf, 
equal-wf-base-T, 
uiff_transitivity, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
decidable__equal_int, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
rem_base_case, 
iff_weakening_equal, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
intformle_wf, 
intformnot_wf, 
decidable__le, 
subtract-add-cancel, 
rem_rec_case, 
true_wf, 
squash_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
rem_bounds_1, 
less_than_wf, 
rem-1, 
ifthenelse_wf, 
add_functionality_wrt_eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
unionElimination, 
universeIsType, 
sqequalRule, 
isect_memberEquality_alt, 
isectElimination, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
equalityTransitivity, 
baseClosed, 
applyEquality, 
computeAll, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
because_Cache, 
addEquality, 
remainderEquality, 
intEquality, 
applyLambdaEquality, 
hyp_replacement, 
equalitySymmetry, 
independent_isectElimination, 
lambdaFormation, 
independent_pairFormation, 
dependent_set_memberEquality, 
cumulativity, 
independent_functionElimination, 
instantiate, 
promote_hyp, 
productElimination, 
equalityElimination, 
impliesFunctionality, 
imageMemberEquality, 
universeEquality, 
imageElimination, 
lambdaFormation_alt, 
addLevel
Latex:
\mforall{}[i:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    ((i  +  1  rem  n)  =  if  (i  rem  n  =\msubz{}  n  -  1)  then  0  else  (i  rem  n)  +  1  fi  )
Date html generated:
2020_05_19-PM-09_41_27
Last ObjectModification:
2019_12_31-PM-00_59_49
Theory : int_2
Home
Index