Nuprl Lemma : one-rem

[m:ℤ]. rem supposing 1 < m


Proof




Definitions occuring in Statement :  less_than: a < b uimplies: supposing a uall: [x:A]. B[x] remainder: rem m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a int_nzero: -o nequal: a ≠ b ∈  not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False all: x:A. B[x] top: Top and: P ∧ Q prop: subtype_rel: A ⊆B squash: T nat: le: A ≤ B less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) uiff: uiff(P;Q)
Lemmas referenced :  subtype_base_sq int_subtype_base div_rem_sum full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-base nequal_wf equal_wf squash_wf true_wf quotient-is-zero false_wf le_wf decidable__le intformnot_wf intformle_wf int_formula_prop_not_lemma int_formula_prop_le_lemma iff_weakening_equal decidable__equal_int add-is-int-iff itermAdd_wf itermMultiply_wf int_term_value_add_lemma int_term_value_mul_lemma less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis natural_numberEquality dependent_set_memberEquality hypothesisEquality lambdaFormation approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation applyEquality baseClosed because_Cache imageElimination equalityTransitivity equalitySymmetry universeEquality unionElimination imageMemberEquality productElimination pointwiseFunctionality rename promote_hyp baseApply closedConclusion sqequalAxiom

Latex:
\mforall{}[m:\mBbbZ{}].  1  rem  m  \msim{}  1  supposing  1  <  m



Date html generated: 2018_05_21-PM-00_25_46
Last ObjectModification: 2017_11_03-PM-01_55_32

Theory : int_2


Home Index