Nuprl Lemma : one-rem
∀[m:ℤ]. 1 rem m ~ 1 supposing 1 < m
Proof
Definitions occuring in Statement : 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
remainder: n rem m
, 
natural_number: $n
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
uiff: uiff(P;Q)
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
div_rem_sum, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
nequal_wf, 
equal_wf, 
squash_wf, 
true_wf, 
quotient-is-zero, 
false_wf, 
le_wf, 
decidable__le, 
intformnot_wf, 
intformle_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
iff_weakening_equal, 
decidable__equal_int, 
add-is-int-iff, 
itermAdd_wf, 
itermMultiply_wf, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
natural_numberEquality, 
dependent_set_memberEquality, 
hypothesisEquality, 
lambdaFormation, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
applyEquality, 
baseClosed, 
because_Cache, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
unionElimination, 
imageMemberEquality, 
productElimination, 
pointwiseFunctionality, 
rename, 
promote_hyp, 
baseApply, 
closedConclusion, 
sqequalAxiom
Latex:
\mforall{}[m:\mBbbZ{}].  1  rem  m  \msim{}  1  supposing  1  <  m
Date html generated:
2018_05_21-PM-00_25_46
Last ObjectModification:
2017_11_03-PM-01_55_32
Theory : int_2
Home
Index