Nuprl Lemma : quotient-is-zero

[a,n:ℕ].  (a ÷ n) 0 ∈ ℤ supposing a < n


Proof




Definitions occuring in Statement :  nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] divide: n ÷ m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  subtract: m true: True less_than': less_than'(a;b) rev_implies:  Q iff: ⇐⇒ Q sq_type: SQType(T) top: Top uiff: uiff(P;Q) so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B or: P ∨ Q decidable: Dec(P) and: P ∧ Q le: A ≤ B nat_plus: + all: x:A. B[x] guard: {T} false: False implies:  Q not: ¬A nequal: a ≠ b ∈  int_nzero: -o nat: prop: uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  not_wf le-add-cancel2 minus-zero add-associates minus-one-mul-top add-swap minus-one-mul minus-add condition-implies-le not-le-2 le-add-cancel add-zero not-equal-2 false_wf decidable__int_equal div_bounds_1 add-commutes one-mul zero-add mul-commutes subtype_base_sq le_reflexive int_subtype_base le_wf set_subtype_base multiply-is-int-iff add_functionality_wrt_le mul_preserves_le decidable__le less_than_transitivity2 rem_bounds_1 nequal_wf equal_wf less_than_irreflexivity le_weakening less_than_transitivity1 div_rem_sum nat_wf less_than_wf
Rules used in proof :  minusEquality independent_pairFormation addEquality voidEquality cumulativity instantiate lambdaEquality applyEquality baseClosed closedConclusion baseApply remainderEquality multiplyEquality unionElimination divideEquality productElimination intEquality voidElimination independent_functionElimination dependent_functionElimination independent_isectElimination natural_numberEquality lambdaFormation dependent_set_memberEquality equalitySymmetry equalityTransitivity because_Cache axiomEquality isect_memberEquality sqequalRule hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid hypothesis cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[a,n:\mBbbN{}].    (a  \mdiv{}  n)  =  0  supposing  a  <  n



Date html generated: 2017_09_29-PM-05_47_15
Last ObjectModification: 2017_09_06-PM-00_34_27

Theory : arithmetic


Home Index