Nuprl Lemma : rem_addition

[i,j:ℕ]. ∀[n:ℕ+].  (((i rem n) (j rem n) rem n) (i rem n) ∈ ℤ)


Proof




Definitions occuring in Statement :  nat_plus: + nat: uall: [x:A]. B[x] remainder: rem m add: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T true: True so_apply: x[s] so_lambda: λ2x.t[x] int_nzero: -o subtype_rel: A ⊆B prop: and: P ∧ Q top: Top all: x:A. B[x] false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a implies:  Q not: ¬A ge: i ≥  nequal: a ≠ b ∈  nat_plus: + nat: squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q)
Lemmas referenced :  nat_plus_wf nat_wf nequal_wf less_than_wf subtype_rel_sets int_subtype_base equal-wf-base int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf full-omega-unsat nat_properties nat_plus_properties equal_wf squash_wf true_wf add_functionality_wrt_eq div_rem_sum subtype_rel_self iff_weakening_equal add-commutes add-swap mul-commutes mul-distributes-right add-associates add_nat_wf remainder_wf decidable__le add-is-int-iff intformnot_wf intformle_wf itermAdd_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_add_lemma false_wf le_wf divide_wf rem_invariant
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut hypothesis Error :universeIsType,  extract_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality because_Cache Error :inhabitedIsType,  setEquality divideEquality multiplyEquality baseClosed applyEquality independent_pairFormation voidEquality voidElimination dependent_functionElimination int_eqEquality lambdaEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination natural_numberEquality lambdaFormation rename setElimination addEquality remainderEquality intEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality instantiate productElimination dependent_set_memberEquality applyLambdaEquality unionElimination pointwiseFunctionality promote_hyp baseApply closedConclusion

Latex:
\mforall{}[i,j:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    (((i  rem  n)  +  (j  rem  n)  rem  n)  =  (i  +  j  rem  n))



Date html generated: 2019_06_20-PM-01_15_02
Last ObjectModification: 2018_09_26-PM-02_36_46

Theory : int_2


Home Index