Nuprl Lemma : rotate_wf

[k:ℕ]. (rot(k) ∈ ℕk ⟶ ℕk)


Proof




Definitions occuring in Statement :  rotate: rot(n) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rotate: rot(n) nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: guard: {T} ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top uiff: uiff(P;Q) subtract: m less_than: a < b bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  int_seg_wf nat_wf eq_int_wf subtract_wf bool_wf equal-wf-T-base assert_wf equal_wf false_wf int_seg_properties nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformeq_wf itermSubtract_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma int_formula_prop_le_lemma int_formula_prop_wf lelt_wf bnot_wf not_wf add-member-int_seg2 decidable__le uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry baseClosed because_Cache intEquality dependent_set_memberEquality independent_pairFormation lambdaFormation productElimination dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll equalityElimination independent_functionElimination impliesFunctionality

Latex:
\mforall{}[k:\mBbbN{}].  (rot(k)  \mmember{}  \mBbbN{}k  {}\mrightarrow{}  \mBbbN{}k)



Date html generated: 2017_04_17-AM-08_04_35
Last ObjectModification: 2017_02_27-PM-04_34_06

Theory : list_1


Home Index