Step
*
2
of Lemma
list-max-map
1. T : Type
2. A : Type
3. g : A ⟶ T
4. f : T ⟶ ℤ
5. L : A List
6. 0 < ||L||
7. list-max(x.f[x];map(g;L)) = ((λp.<fst(p), g (snd(p))>) list-max(x.f[g x];L)) ∈ (i:ℤ × T)
⊢ list-max(x.f[x];map(g;L)) = ((λp.<fst(p), g (snd(p))>) list-max(x.f[g x];L)) ∈ (i:ℤ × {x:T| f[x] = i ∈ ℤ} )
BY
{ (StrongRevHypSubst (-1) 0 THEN Auto THEN Try (Complete (Auto))) }
1
1. T : Type
2. A : Type
3. g : A ⟶ T
4. f : T ⟶ ℤ
5. L : A List
6. 0 < ||L||
7. list-max(x.f[x];map(g;L)) = ((λp.<fst(p), g (snd(p))>) list-max(x.f[g x];L)) ∈ (i:ℤ × T)
8. i : ℤ
9. z1 : T
10. <i, z1> = list-max(x.f[x];map(g;L)) ∈ (i:ℤ × T)
⊢ z1 ∈ {x:T| f[x] = i ∈ ℤ}
Latex:
Latex:
1. T : Type
2. A : Type
3. g : A {}\mrightarrow{} T
4. f : T {}\mrightarrow{} \mBbbZ{}
5. L : A List
6. 0 < ||L||
7. list-max(x.f[x];map(g;L)) = ((\mlambda{}p.<fst(p), g (snd(p))>) list-max(x.f[g x];L))
\mvdash{} list-max(x.f[x];map(g;L)) = ((\mlambda{}p.<fst(p), g (snd(p))>) list-max(x.f[g x];L))
By
Latex:
(StrongRevHypSubst (-1) 0 THEN Auto THEN Try (Complete (Auto)))
Home
Index