Nuprl Lemma : list-max-map
∀[T,A:Type]. ∀[g:A ⟶ T]. ∀[f:T ⟶ ℤ]. ∀[L:A List].
  list-max(x.f[x];map(g;L)) = ((λp.<fst(p), g (snd(p))>) list-max(x.f[g x];L)) ∈ (i:ℤ × {x:T| f[x] = i ∈ ℤ} ) 
  supposing 0 < ||L||
Proof
Definitions occuring in Statement : 
list-max: list-max(x.f[x];L), 
length: ||as||, 
map: map(f;as), 
list: T List, 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
pi1: fst(t), 
pi2: snd(t), 
set: {x:A| B[x]} , 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
pair: <a, b>, 
product: x:A × B[x], 
natural_number: $n, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
prop: ℙ, 
list-max: list-max(x.f[x];L), 
list-max-aux: list-max-aux(x.f[x];L), 
top: Top, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
or: P ∨ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
false: False, 
and: P ∧ Q, 
cons: [a / b], 
so_apply: x[s], 
outl: outl(x), 
pi1: fst(t), 
pi2: snd(t), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
isl: isl(x), 
btrue: tt, 
true: True, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
nat: ℕ, 
ge: i ≥ j , 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
subtype_rel: A ⊆r B, 
bfalse: ff, 
colength: colength(L), 
guard: {T}, 
decidable: Dec(P), 
nil: [], 
it: ⋅, 
sq_type: SQType(T), 
has-value: (a)↓, 
bool: 𝔹, 
unit: Unit, 
uiff: uiff(P;Q), 
bnot: ¬bb, 
isr: isr(x)
Lemmas referenced : 
less_than_wf, 
length_wf, 
list_wf, 
list_accum-map, 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
list_accum_cons_lemma, 
value-type-has-value, 
int-value-type, 
top_wf, 
assert_wf, 
isl_wf, 
set_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
equal-wf-T-base, 
nat_wf, 
colength_wf_list, 
int_subtype_base, 
list_accum_nil_lemma, 
spread_cons_lemma, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
le_wf, 
equal_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
subtype_base_sq, 
set_subtype_base, 
decidable__equal_int, 
lt_int_wf, 
pi1_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
ifthenelse_wf, 
squash_wf, 
true_wf, 
list_accum_wf, 
not-isr-isl, 
isr_wf, 
pi2_wf, 
list-max_wf, 
map_wf, 
map-length, 
list-max-property2
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
functionEquality, 
intEquality, 
universeEquality, 
isect_memberFormation, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
unionElimination, 
imageElimination, 
productElimination, 
promote_hyp, 
hypothesis_subsumption, 
independent_isectElimination, 
applyEquality, 
dependent_set_memberEquality, 
inlEquality, 
independent_pairEquality, 
productEquality, 
unionEquality, 
lambdaEquality, 
lambdaFormation, 
setElimination, 
rename, 
intWeakElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
independent_pairFormation, 
setEquality, 
dependent_pairEquality, 
functionExtensionality, 
cumulativity, 
applyLambdaEquality, 
addEquality, 
baseClosed, 
instantiate, 
callbyvalueReduce, 
equalityElimination, 
hyp_replacement, 
imageMemberEquality
Latex:
\mforall{}[T,A:Type].  \mforall{}[g:A  {}\mrightarrow{}  T].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[L:A  List].
    list-max(x.f[x];map(g;L))  =  ((\mlambda{}p.<fst(p),  g  (snd(p))>)  list-max(x.f[g  x];L))  supposing  0  <  ||L||
Date html generated:
2019_06_20-PM-01_30_49
Last ObjectModification:
2018_08_21-PM-01_55_35
Theory : list_1
Home
Index