Step
*
1
of Lemma
list_accum_functionality
1. T : Type
2. A : Type
3. f : T ⟶ A ⟶ T
4. g : T ⟶ A ⟶ T
⊢ ∀y,z:T.
((∀L':A List. ∀a:A.
(L' @ [a] ≤ []
⇒ (f[accumulate (with value x and list item a):
f[x;a]
over list:
L'
with starting value:
y);a]
= g[accumulate (with value x and list item a):
f[x;a]
over list:
L'
with starting value:
y);a]
∈ T)))
⇒ (y = z ∈ T)
⇒ (accumulate (with value x and list item a):
f[x;a]
over list:
[]
with starting value:
y)
= accumulate (with value x and list item a):
g[x;a]
over list:
[]
with starting value:
z)
∈ T))
BY
{ (Reduce 0 THEN Auto)⋅ }
Latex:
Latex:
1. T : Type
2. A : Type
3. f : T {}\mrightarrow{} A {}\mrightarrow{} T
4. g : T {}\mrightarrow{} A {}\mrightarrow{} T
\mvdash{} \mforall{}y,z:T.
((\mforall{}L':A List. \mforall{}a:A.
(L' @ [a] \mleq{} []
{}\mRightarrow{} (f[accumulate (with value x and list item a):
f[x;a]
over list:
L'
with starting value:
y);a]
= g[accumulate (with value x and list item a):
f[x;a]
over list:
L'
with starting value:
y);a])))
{}\mRightarrow{} (y = z)
{}\mRightarrow{} (accumulate (with value x and list item a):
f[x;a]
over list:
[]
with starting value:
y)
= accumulate (with value x and list item a):
g[x;a]
over list:
[]
with starting value:
z)))
By
Latex:
(Reduce 0 THEN Auto)\mcdot{}
Home
Index