Step
*
2
1
1
of Lemma
member-mapl
1. [T] : Type
2. [T'] : Type
3. u : T
4. v : T List
5. ∀y:T'. ∀f:{x:T| (x ∈ v)} ⟶ T'. ((y ∈ mapl(f;v))
⇐⇒ ∃a:T. ((a ∈ v) ∧ (y = (f a) ∈ T')))
6. y : T'
7. f : {x:T| (x ∈ [u / v])} ⟶ T'
8. (y ∈ [f u / mapl(f;v)])
⊢ ∃a:T. ((a ∈ [u / v]) ∧ (y = (f a) ∈ T'))
BY
{ (((RWO "cons_member" (-1)) THENM D -1) THEN Auto) }
1
1. [T] : Type
2. [T'] : Type
3. u : T
4. v : T List
5. ∀y:T'. ∀f:{x:T| (x ∈ v)} ⟶ T'. ((y ∈ mapl(f;v))
⇐⇒ ∃a:T. ((a ∈ v) ∧ (y = (f a) ∈ T')))
6. y : T'
7. f : {x:T| (x ∈ [u / v])} ⟶ T'
8. (y ∈ mapl(f;v))
⊢ ∃a:T. ((a ∈ [u / v]) ∧ (y = (f a) ∈ T'))
Latex:
Latex:
1. [T] : Type
2. [T'] : Type
3. u : T
4. v : T List
5. \mforall{}y:T'. \mforall{}f:\{x:T| (x \mmember{} v)\} {}\mrightarrow{} T'. ((y \mmember{} mapl(f;v)) \mLeftarrow{}{}\mRightarrow{} \mexists{}a:T. ((a \mmember{} v) \mwedge{} (y = (f a))))
6. y : T'
7. f : \{x:T| (x \mmember{} [u / v])\} {}\mrightarrow{} T'
8. (y \mmember{} [f u / mapl(f;v)])
\mvdash{} \mexists{}a:T. ((a \mmember{} [u / v]) \mwedge{} (y = (f a)))
By
Latex:
(((RWO "cons\_member" (-1)) THENM D -1) THEN Auto)
Home
Index