Nuprl Lemma : member-mapl

[T,T':Type].  ∀L:T List. ∀y:T'. ∀f:{x:T| (x ∈ L)}  ⟶ T'.  ((y ∈ mapl(f;L)) ⇐⇒ ∃a:T. ((a ∈ L) c∧ (y (f a) ∈ T')))


Proof




Definitions occuring in Statement :  mapl: mapl(f;l) l_member: (x ∈ l) list: List uall: [x:A]. B[x] cand: c∧ B all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: cand: c∧ B so_apply: x[s] implies:  Q mapl: mapl(f;l) top: Top iff: ⇐⇒ Q and: P ∧ Q uimplies: supposing a not: ¬A false: False rev_implies:  Q exists: x:A. B[x] l_member: (x ∈ l) select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] nat: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q subtype_rel: A ⊆B guard: {T} squash: T
Lemmas referenced :  list_induction all_wf l_member_wf iff_wf mapl_wf exists_wf equal_wf list_wf map_nil_lemma map_cons_lemma null_nil_lemma btrue_wf member-implies-null-eq-bfalse nil_wf btrue_neq_bfalse length_of_nil_lemma stuck-spread base_wf nat_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf cons_wf cons_member subtype_rel_dep_function subtype_rel_sets set_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity functionEquality setEquality because_Cache hypothesis setElimination rename functionExtensionality applyEquality productEquality dependent_set_memberEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality universeEquality independent_pairFormation independent_isectElimination equalityTransitivity equalitySymmetry productElimination baseClosed natural_numberEquality dependent_pairFormation int_eqEquality intEquality computeAll inlFormation inrFormation unionElimination hyp_replacement applyLambdaEquality imageMemberEquality imageElimination

Latex:
\mforall{}[T,T':Type].
    \mforall{}L:T  List.  \mforall{}y:T'.  \mforall{}f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  T'.    ((y  \mmember{}  mapl(f;L))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}a:T.  ((a  \mmember{}  L)  c\mwedge{}  (y  =  (f  a))))



Date html generated: 2017_04_17-AM-08_41_03
Last ObjectModification: 2017_02_27-PM-05_00_52

Theory : list_1


Home Index