Nuprl Lemma : member-mapl
∀[T,T':Type].  ∀L:T List. ∀y:T'. ∀f:{x:T| (x ∈ L)}  ⟶ T'.  ((y ∈ mapl(f;L)) ⇐⇒ ∃a:T. ((a ∈ L) c∧ (y = (f a) ∈ T')))
Proof
Definitions occuring in Statement : 
mapl: mapl(f;l), 
l_member: (x ∈ l), 
list: T List, 
uall: ∀[x:A]. B[x], 
cand: A c∧ B, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
cand: A c∧ B, 
so_apply: x[s], 
implies: P ⇒ Q, 
mapl: mapl(f;l), 
top: Top, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
uimplies: b supposing a, 
not: ¬A, 
false: False, 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x], 
l_member: (x ∈ l), 
select: L[n], 
nil: [], 
it: ⋅, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
nat: ℕ, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
guard: {T}, 
squash: ↓T
Lemmas referenced : 
list_induction, 
all_wf, 
l_member_wf, 
iff_wf, 
mapl_wf, 
exists_wf, 
equal_wf, 
list_wf, 
map_nil_lemma, 
map_cons_lemma, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
nil_wf, 
btrue_neq_bfalse, 
length_of_nil_lemma, 
stuck-spread, 
base_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
cons_wf, 
cons_member, 
subtype_rel_dep_function, 
subtype_rel_sets, 
set_wf, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
functionEquality, 
setEquality, 
because_Cache, 
hypothesis, 
setElimination, 
rename, 
functionExtensionality, 
applyEquality, 
productEquality, 
dependent_set_memberEquality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
universeEquality, 
independent_pairFormation, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
baseClosed, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
inlFormation, 
inrFormation, 
unionElimination, 
hyp_replacement, 
applyLambdaEquality, 
imageMemberEquality, 
imageElimination
Latex:
\mforall{}[T,T':Type].
    \mforall{}L:T  List.  \mforall{}y:T'.  \mforall{}f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  T'.    ((y  \mmember{}  mapl(f;L))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}a:T.  ((a  \mmember{}  L)  c\mwedge{}  (y  =  (f  a))))
Date html generated:
2017_04_17-AM-08_41_03
Last ObjectModification:
2017_02_27-PM-05_00_52
Theory : list_1
Home
Index