Step
*
1
of Lemma
member-product-map
1. [A] : Type
2. [B] : Type
3. [C] : Type
4. F : A ⟶ B ⟶ C
5. u : A
6. v : A List
7. ∀bs:B List. ∀c:C.
((c ∈ concat(map(λa.map(λb.(F a b);bs);v)))
⇐⇒ ∃a:A. ((a ∈ v) ∧ (∃b:B. ((b ∈ bs) ∧ (c = (F a b) ∈ C)))))
8. bs : B List
9. c : C
10. (∃y:B. ((y ∈ bs) ∧ (c = ((λb.(F u b)) y) ∈ C))) ∨ (c ∈ concat(map(λa.map(λb.(F a b);bs);v)))
⊢ ∃a:A. (((a = u ∈ A) ∨ (a ∈ v)) ∧ (∃b:B. ((b ∈ bs) ∧ (c = (F a b) ∈ C))))
BY
{ ((RWW "7" (-1) THENM D -1) THENA Auto)⋅ }
1
1. [A] : Type
2. [B] : Type
3. [C] : Type
4. F : A ⟶ B ⟶ C
5. u : A
6. v : A List
7. ∀bs:B List. ∀c:C.
((c ∈ concat(map(λa.map(λb.(F a b);bs);v)))
⇐⇒ ∃a:A. ((a ∈ v) ∧ (∃b:B. ((b ∈ bs) ∧ (c = (F a b) ∈ C)))))
8. bs : B List
9. c : C
10. ∃y:B. ((y ∈ bs) ∧ (c = ((λb.(F u b)) y) ∈ C))
⊢ ∃a:A. (((a = u ∈ A) ∨ (a ∈ v)) ∧ (∃b:B. ((b ∈ bs) ∧ (c = (F a b) ∈ C))))
2
1. [A] : Type
2. [B] : Type
3. [C] : Type
4. F : A ⟶ B ⟶ C
5. u : A
6. v : A List
7. ∀bs:B List. ∀c:C.
((c ∈ concat(map(λa.map(λb.(F a b);bs);v)))
⇐⇒ ∃a:A. ((a ∈ v) ∧ (∃b:B. ((b ∈ bs) ∧ (c = (F a b) ∈ C)))))
8. bs : B List
9. c : C
10. ∃a:A. ((a ∈ v) ∧ (∃b:B. ((b ∈ bs) ∧ (c = (F a b) ∈ C))))
⊢ ∃a:A. (((a = u ∈ A) ∨ (a ∈ v)) ∧ (∃b:B. ((b ∈ bs) ∧ (c = (F a b) ∈ C))))
Latex:
Latex:
1. [A] : Type
2. [B] : Type
3. [C] : Type
4. F : A {}\mrightarrow{} B {}\mrightarrow{} C
5. u : A
6. v : A List
7. \mforall{}bs:B List. \mforall{}c:C.
((c \mmember{} concat(map(\mlambda{}a.map(\mlambda{}b.(F a b);bs);v)))
\mLeftarrow{}{}\mRightarrow{} \mexists{}a:A. ((a \mmember{} v) \mwedge{} (\mexists{}b:B. ((b \mmember{} bs) \mwedge{} (c = (F a b))))))
8. bs : B List
9. c : C
10. (\mexists{}y:B. ((y \mmember{} bs) \mwedge{} (c = ((\mlambda{}b.(F u b)) y)))) \mvee{} (c \mmember{} concat(map(\mlambda{}a.map(\mlambda{}b.(F a b);bs);v)))
\mvdash{} \mexists{}a:A. (((a = u) \mvee{} (a \mmember{} v)) \mwedge{} (\mexists{}b:B. ((b \mmember{} bs) \mwedge{} (c = (F a b)))))
By
Latex:
((RWW "7" (-1) THENM D -1) THENA Auto)\mcdot{}
Home
Index