Nuprl Lemma : member-product-map

[A,B,C:Type].
  ∀F:A ⟶ B ⟶ C. ∀as:A List. ∀bs:B List. ∀c:C.
    ((c ∈ product-map(F;as;bs)) ⇐⇒ ∃a:A. ((a ∈ as) ∧ (∃b:B. ((b ∈ bs) ∧ (c (F b) ∈ C)))))


Proof




Definitions occuring in Statement :  product-map: product-map(F;as;bs) l_member: (x ∈ l) list: List uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  product-map: product-map(F;as;bs) uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] exists: x:A. B[x] implies:  Q top: Top concat: concat(ll) iff: ⇐⇒ Q false: False rev_implies:  Q or: P ∨ Q cand: c∧ B guard: {T}
Lemmas referenced :  list_induction all_wf list_wf iff_wf l_member_wf concat_wf map_wf exists_wf equal_wf map_nil_lemma reduce_nil_lemma false_wf nil_member nil_wf map_cons_lemma or_wf member-map member_append append_wf concat-cons cons_member cons_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality lambdaEquality cumulativity hypothesis because_Cache applyEquality functionExtensionality productEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation productElimination addLevel allFunctionality impliesFunctionality existsFunctionality andLevelFunctionality existsLevelFunctionality rename orFunctionality functionEquality universeEquality levelHypothesis promote_hyp unionElimination dependent_pairFormation inlFormation inrFormation equalitySymmetry dependent_set_memberEquality applyLambdaEquality setElimination equalityTransitivity

Latex:
\mforall{}[A,B,C:Type].
    \mforall{}F:A  {}\mrightarrow{}  B  {}\mrightarrow{}  C.  \mforall{}as:A  List.  \mforall{}bs:B  List.  \mforall{}c:C.
        ((c  \mmember{}  product-map(F;as;bs))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}a:A.  ((a  \mmember{}  as)  \mwedge{}  (\mexists{}b:B.  ((b  \mmember{}  bs)  \mwedge{}  (c  =  (F  a  b))))))



Date html generated: 2017_04_14-AM-09_27_16
Last ObjectModification: 2017_02_27-PM-04_01_01

Theory : list_1


Home Index