Step
*
of Lemma
mklist-eq
∀[n:ℕ]. ∀[f,g:ℕ ⟶ Base]. mklist(n;f) ~ mklist(n;g) supposing ∀[i:ℕn]. (f i ~ g i)
BY
{ (Intros
THEN Try (Complete ((EqCD THEN Try (Complete (Auto)) THEN GenConclAtAddr [2;1] THEN GenConclAtAddr [2;2] THEN Auto)))
THEN SqUnhide
THEN RepeatFor 3 (MoveToConcl (-1))
THEN NatInd (-1)
THEN Reduce 0
THEN Try (Complete (Auto))
THEN Intros
THEN Try (Complete ((EqCD
THEN Try (Complete (Auto))
THEN GenConclAtAddr [2;1]
THEN GenConclAtAddr [2;2]
THEN Auto)))) }
1
1. n : ℤ
2. 0 < n
3. ∀f,g:ℕ ⟶ Base. ((∀[i:ℕn - 1]. (f i ~ g i))
⇒ (mklist(n - 1;f) ~ mklist(n - 1;g)))
4. f : ℕ ⟶ Base@i
5. g : ℕ ⟶ Base@i
6. ∀[i:ℕn]. (f i ~ g i)@i
⊢ mklist(n;f) ~ mklist(n;g)
Latex:
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[f,g:\mBbbN{} {}\mrightarrow{} Base]. mklist(n;f) \msim{} mklist(n;g) supposing \mforall{}[i:\mBbbN{}n]. (f i \msim{} g i)
By
Latex:
(Intros
THEN Try (Complete ((EqCD
THEN Try (Complete (Auto))
THEN GenConclAtAddr [2;1]
THEN GenConclAtAddr [2;2]
THEN Auto)))
THEN SqUnhide
THEN RepeatFor 3 (MoveToConcl (-1))
THEN NatInd (-1)
THEN Reduce 0
THEN Try (Complete (Auto))
THEN Intros
THEN Try (Complete ((EqCD
THEN Try (Complete (Auto))
THEN GenConclAtAddr [2;1]
THEN GenConclAtAddr [2;2]
THEN Auto))))
Home
Index