Nuprl Lemma : mklist-eq
∀[n:ℕ]. ∀[f,g:ℕ ⟶ Base].  mklist(n;f) ~ mklist(n;g) supposing ∀[i:ℕn]. (f i ~ g i)
Proof
Definitions occuring in Statement : 
mklist: mklist(n;f)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
le: A ≤ B
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
so_apply: x[s]
, 
mklist: mklist(n;f)
, 
less_than': less_than'(a;b)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
less_than: a < b
Lemmas referenced : 
int_seg_properties, 
add-member-int_seg1, 
add-member-int_seg2, 
lelt_wf, 
subtype_rel_self, 
mklist-prepend1, 
le_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
itermAdd_wf, 
intformeq_wf, 
decidable__equal_int, 
int_subtype_base, 
subtype_base_sq, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
subtract_wf, 
decidable__le, 
false_wf, 
int_seg_subtype_nat, 
primrec0_lemma, 
base_wf, 
nat_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
sqequal-wf-base, 
int_seg_wf, 
uall_wf, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
sqequalAxiom, 
productElimination, 
applyEquality, 
because_Cache, 
functionEquality, 
sqequalIntensionalEquality, 
unionElimination, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
cumulativity, 
addEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f,g:\mBbbN{}  {}\mrightarrow{}  Base].    mklist(n;f)  \msim{}  mklist(n;g)  supposing  \mforall{}[i:\mBbbN{}n].  (f  i  \msim{}  g  i)
Date html generated:
2016_05_14-PM-01_45_38
Last ObjectModification:
2016_01_15-AM-08_22_29
Theory : list_1
Home
Index