Nuprl Lemma : mklist-eq

[n:ℕ]. ∀[f,g:ℕ ⟶ Base].  mklist(n;f) mklist(n;g) supposing ∀[i:ℕn]. (f i)


Proof




Definitions occuring in Statement :  mklist: mklist(n;f) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n base: Base sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T nat: implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: le: A ≤ B so_lambda: λ2x.t[x] subtype_rel: A ⊆B guard: {T} so_apply: x[s] mklist: mklist(n;f) less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) int_seg: {i..j-} lelt: i ≤ j < k uiff: uiff(P;Q) subtract: m less_than: a < b
Lemmas referenced :  int_seg_properties add-member-int_seg1 add-member-int_seg2 lelt_wf subtype_rel_self mklist-prepend1 le_wf int_term_value_add_lemma int_formula_prop_eq_lemma itermAdd_wf intformeq_wf decidable__equal_int int_subtype_base subtype_base_sq int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le false_wf int_seg_subtype_nat primrec0_lemma base_wf nat_wf less_than_irreflexivity less_than_transitivity1 sqequal-wf-base int_seg_wf uall_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom productElimination applyEquality because_Cache functionEquality sqequalIntensionalEquality unionElimination instantiate equalityTransitivity equalitySymmetry dependent_set_memberEquality cumulativity addEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f,g:\mBbbN{}  {}\mrightarrow{}  Base].    mklist(n;f)  \msim{}  mklist(n;g)  supposing  \mforall{}[i:\mBbbN{}n].  (f  i  \msim{}  g  i)



Date html generated: 2016_05_14-PM-01_45_38
Last ObjectModification: 2016_01_15-AM-08_22_29

Theory : list_1


Home Index