Nuprl Lemma : mklist-prepend1

[f:Top]. ∀[m:ℕ].  (mklist(1 m;f) [f 0] mklist(m;λi.(f (1 i))))


Proof




Definitions occuring in Statement :  mklist: mklist(n;f) append: as bs cons: [a b] nil: [] nat: uall: [x:A]. B[x] top: Top apply: a lambda: λx.A[x] add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] mklist: mklist(n;f) decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) guard: {T} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list_ind_cons_lemma list_ind_nil_lemma primrec0_lemma primrec1_lemma subtract-1-ge-0 subtype_base_sq int_subtype_base decidable__equal_int intformnot_wf intformeq_wf itermAdd_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_subtract_lemma istype-nat istype-top primrec-unroll lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination Error :lambdaFormation_alt,  natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  axiomSqEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  instantiate cumulativity intEquality because_Cache unionElimination equalityTransitivity equalitySymmetry Error :isectIsTypeImplies,  addEquality equalityElimination productElimination Error :equalityIstype,  promote_hyp

Latex:
\mforall{}[f:Top].  \mforall{}[m:\mBbbN{}].    (mklist(1  +  m;f)  \msim{}  [f  0]  @  mklist(m;\mlambda{}i.(f  (1  +  i))))



Date html generated: 2019_06_20-PM-01_31_39
Last ObjectModification: 2019_02_06-PM-03_51_15

Theory : list_1


Home Index