Step
*
of Lemma
norm-list_wf_sq
∀[T:Type]. (∀[N:sq-id-fun(T)]. (norm-list(N) ∈ sq-id-fun(T List))) supposing (value-type(T) and (T ⊆r Base))
BY
{ (Auto
THEN (InstLemma `subtype_base_sq` [⌜T List⌝]⋅
THENA (Auto THEN (D 0 THEN Auto) THEN ListInd (-1)⋅ THEN Auto THEN DoSubsume ⋅ THEN Auto)
)
THEN (InstLemma `subtype_base_sq` [⌜T⌝]⋅ THENA Auto)
THEN Unfold `sq-id-fun` 0
THEN ExtWith [`L'] [⌜Top ⟶ Top⌝]⋅
THEN Auto
THEN Try (ProveWfLemma)) }
1
1. T : Type
2. T ⊆r Base
3. value-type(T)
4. N : sq-id-fun(T)
5. SQType(T List)
6. SQType(T)
7. L : T List
⊢ norm-list(N) L ∈ {y:T List| L ~ y}
Latex:
Latex:
\mforall{}[T:Type]
(\mforall{}[N:sq-id-fun(T)]. (norm-list(N) \mmember{} sq-id-fun(T List))) supposing (value-type(T) and (T \msubseteq{}r Base))
By
Latex:
(Auto
THEN (InstLemma `subtype\_base\_sq` [\mkleeneopen{}T List\mkleeneclose{}]\mcdot{}
THENA (Auto THEN (D 0 THEN Auto) THEN ListInd (-1)\mcdot{} THEN Auto THEN DoSubsume \mcdot{} THEN Auto)
)
THEN (InstLemma `subtype\_base\_sq` [\mkleeneopen{}T\mkleeneclose{}]\mcdot{} THENA Auto)
THEN Unfold `sq-id-fun` 0
THEN ExtWith [`L'] [\mkleeneopen{}Top {}\mrightarrow{} Top\mkleeneclose{}]\mcdot{}
THEN Auto
THEN Try (ProveWfLemma))
Home
Index