Nuprl Lemma : norm-list_wf_sq
∀[T:Type]. (∀[N:sq-id-fun(T)]. (norm-list(N) ∈ sq-id-fun(T List))) supposing (value-type(T) and (T ⊆r Base))
Proof
Definitions occuring in Statement : 
norm-list: norm-list(N)
, 
list: T List
, 
sq-id-fun: sq-id-fun(T)
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sq-id-fun: sq-id-fun(T)
, 
top: Top
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
or: P ∨ Q
, 
norm-list: norm-list(N)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
cons: [a / b]
, 
colength: colength(L)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
has-value: (a)↓
, 
true: True
Lemmas referenced : 
subtype_base_sq, 
list_wf, 
list_subtype_base, 
top_wf, 
sq-id-fun_wf, 
value-type_wf, 
subtype_rel_wf, 
base_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
equal-wf-T-base, 
nat_wf, 
colength_wf_list, 
less_than_transitivity1, 
less_than_irreflexivity, 
list-cases, 
list_ind_nil_lemma, 
nil_wf, 
product_subtype_list, 
spread_cons_lemma, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
le_wf, 
equal_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
set_subtype_base, 
int_subtype_base, 
decidable__equal_int, 
list_ind_cons_lemma, 
value-type-has-value, 
set-value-type, 
sqequal-wf-base, 
list-value-type, 
cons_wf, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
because_Cache, 
functionExtensionality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
lambdaFormation, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
applyEquality, 
unionElimination, 
dependent_set_memberEquality, 
sqequalIntensionalEquality, 
baseClosed, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
applyLambdaEquality, 
addEquality, 
instantiate, 
imageElimination, 
callbyvalueReduce, 
setEquality, 
baseApply, 
closedConclusion, 
imageMemberEquality
Latex:
\mforall{}[T:Type]
    (\mforall{}[N:sq-id-fun(T)].  (norm-list(N)  \mmember{}  sq-id-fun(T  List)))  supposing  (value-type(T)  and  (T  \msubseteq{}r  Base))
Date html generated:
2017_04_14-AM-09_27_51
Last ObjectModification:
2017_02_27-PM-04_01_19
Theory : list_1
Home
Index