Nuprl Lemma : norm-list_wf_sq

[T:Type]. (∀[N:sq-id-fun(T)]. (norm-list(N) ∈ sq-id-fun(T List))) supposing (value-type(T) and (T ⊆Base))


Proof




Definitions occuring in Statement :  norm-list: norm-list(N) list: List sq-id-fun: sq-id-fun(T) value-type: value-type(T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sq-id-fun: sq-id-fun(T) top: Top all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q norm-list: norm-list(N) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) has-value: (a)↓ true: True
Lemmas referenced :  subtype_base_sq list_wf list_subtype_base top_wf sq-id-fun_wf value-type_wf subtype_rel_wf base_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases list_ind_nil_lemma nil_wf product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma set_subtype_base int_subtype_base decidable__equal_int list_ind_cons_lemma value-type-has-value set-value-type sqequal-wf-base list-value-type cons_wf squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis independent_isectElimination because_Cache functionExtensionality isect_memberEquality voidElimination voidEquality sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeEquality lambdaFormation setElimination rename intWeakElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination independent_pairFormation computeAll independent_functionElimination applyEquality unionElimination dependent_set_memberEquality sqequalIntensionalEquality baseClosed promote_hyp hypothesis_subsumption productElimination applyLambdaEquality addEquality instantiate imageElimination callbyvalueReduce setEquality baseApply closedConclusion imageMemberEquality

Latex:
\mforall{}[T:Type]
    (\mforall{}[N:sq-id-fun(T)].  (norm-list(N)  \mmember{}  sq-id-fun(T  List)))  supposing  (value-type(T)  and  (T  \msubseteq{}r  Base))



Date html generated: 2017_04_14-AM-09_27_51
Last ObjectModification: 2017_02_27-PM-04_01_19

Theory : list_1


Home Index