Nuprl Lemma : sq-id-fun_wf
∀[T:Type]. sq-id-fun(T) ∈ Type supposing T ⊆r Base
Proof
Definitions occuring in Statement : 
sq-id-fun: sq-id-fun(T)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sq-id-fun: sq-id-fun(T)
Lemmas referenced : 
subtype_base_sq, 
subtype_rel_wf, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
functionEquality, 
setEquality, 
sqequalIntensionalEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  sq-id-fun(T)  \mmember{}  Type  supposing  T  \msubseteq{}r  Base
Date html generated:
2016_05_13-PM-03_46_08
Last ObjectModification:
2015_12_26-AM-09_58_37
Theory : call!by!value_2
Home
Index