Nuprl Lemma : sq-id-fun_wf

[T:Type]. sq-id-fun(T) ∈ Type supposing T ⊆Base


Proof




Definitions occuring in Statement :  sq-id-fun: sq-id-fun(T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sq-id-fun: sq-id-fun(T)
Lemmas referenced :  subtype_base_sq subtype_rel_wf base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis sqequalRule functionEquality setEquality sqequalIntensionalEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  sq-id-fun(T)  \mmember{}  Type  supposing  T  \msubseteq{}r  Base



Date html generated: 2016_05_13-PM-03_46_08
Last ObjectModification: 2015_12_26-AM-09_58_37

Theory : call!by!value_2


Home Index