Step
*
of Lemma
nth_tl_decomp_eq
∀[T:Type]. ∀[m:ℕ]. ∀[L:T List]. nth_tl(m;L) = [L[m] / nth_tl(1 + m;L)] ∈ (T List) supposing m < ||L||
BY
{ (((Auto THEN InstLemma `nth_tl_decomp` [T;m;L]) THENM HypSubst (-1) 0) THEN Auto) }
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[m:\mBbbN{}]. \mforall{}[L:T List]. nth\_tl(m;L) = [L[m] / nth\_tl(1 + m;L)] supposing m < ||L||
By
Latex:
(((Auto THEN InstLemma `nth\_tl\_decomp` [T;m;L]) THENM HypSubst (-1) 0) THEN Auto)
Home
Index