Nuprl Lemma : nth_tl_decomp_eq
∀[T:Type]. ∀[m:ℕ]. ∀[L:T List].  nth_tl(m;L) = [L[m] / nth_tl(1 + m;L)] ∈ (T List) supposing m < ||L||
Proof
Definitions occuring in Statement : 
select: L[n]
, 
length: ||as||
, 
nth_tl: nth_tl(n;as)
, 
cons: [a / b]
, 
list: T List
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat: ℕ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
nat_wf, 
list_wf, 
length_wf, 
less_than_wf, 
nth_tl_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
select_wf, 
cons_wf, 
nth_tl_decomp
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
cumulativity, 
because_Cache, 
setElimination, 
rename, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
addEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[m:\mBbbN{}].  \mforall{}[L:T  List].    nth\_tl(m;L)  =  [L[m]  /  nth\_tl(1  +  m;L)]  supposing  m  <  ||L||
Date html generated:
2016_05_14-AM-07_37_23
Last ObjectModification:
2016_01_15-AM-08_43_35
Theory : list_1
Home
Index