Step
*
of Lemma
orbit-cover
∀[T:Type]
((∀x,y:T. Dec(x = y ∈ T))
⇒ finite-type(T)
⇒ (∀f:T ⟶ T
∃orbits:T List List
((∀orbit∈orbits.0 < ||orbit||
∧ no_repeats(T;orbit)
∧ (∀i:ℕ||orbit||. (orbit[i] = (f^i orbit[0]) ∈ T))
∧ (∀b:T. ((b ∈ orbit)
⇐⇒ ∃n:ℕ. (b = (f^n orbit[0]) ∈ T))))
∧ (∀a:T. (∃orbit∈orbits. (a ∈ orbit)))
∧ (∀o1∈orbits.(∀o2∈orbits.(o1[0] ∈ o2)
⇒ o1 ⊆ o2)))))
BY
{ (Auto
THEN (InstLemma `orbit-exists` [⌜T⌝;⌜f⌝]⋅ THENA Auto)
THEN (Skolemize (-1) `orbit' THENA Auto)
THEN Thin (-3)
THEN D 3
THEN ExRepD) }
1
1. [T] : Type
2. ∀x,y:T. Dec(x = y ∈ T)
3. n : ℕ
4. f1 : ℕn ⟶ T
5. Surj(ℕn;T;f1)
6. f : T ⟶ T
7. orbit : a:T ⟶ (T List)
8. ∀a:T
(no_repeats(T;orbit a)
∧ (∀i:ℕ||orbit a||. (orbit a[i] = (f^i a) ∈ T))
∧ (∀b:T. ((b ∈ orbit a)
⇐⇒ ∃n:ℕ. (b = (f^n a) ∈ T))))
⊢ ∃orbits:T List List
((∀orbit∈orbits.0 < ||orbit||
∧ no_repeats(T;orbit)
∧ (∀i:ℕ||orbit||. (orbit[i] = (f^i orbit[0]) ∈ T))
∧ (∀b:T. ((b ∈ orbit)
⇐⇒ ∃n:ℕ. (b = (f^n orbit[0]) ∈ T))))
∧ (∀a:T. (∃orbit∈orbits. (a ∈ orbit)))
∧ (∀o1∈orbits.(∀o2∈orbits.(o1[0] ∈ o2)
⇒ o1 ⊆ o2)))
Latex:
Latex:
\mforall{}[T:Type]
((\mforall{}x,y:T. Dec(x = y))
{}\mRightarrow{} finite-type(T)
{}\mRightarrow{} (\mforall{}f:T {}\mrightarrow{} T
\mexists{}orbits:T List List
((\mforall{}orbit\mmember{}orbits.0 < ||orbit||
\mwedge{} no\_repeats(T;orbit)
\mwedge{} (\mforall{}i:\mBbbN{}||orbit||. (orbit[i] = (f\^{}i orbit[0])))
\mwedge{} (\mforall{}b:T. ((b \mmember{} orbit) \mLeftarrow{}{}\mRightarrow{} \mexists{}n:\mBbbN{}. (b = (f\^{}n orbit[0])))))
\mwedge{} (\mforall{}a:T. (\mexists{}orbit\mmember{}orbits. (a \mmember{} orbit)))
\mwedge{} (\mforall{}o1\mmember{}orbits.(\mforall{}o2\mmember{}orbits.(o1[0] \mmember{} o2) {}\mRightarrow{} o1 \msubseteq{} o2)))))
By
Latex:
(Auto
THEN (InstLemma `orbit-exists` [\mkleeneopen{}T\mkleeneclose{};\mkleeneopen{}f\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (Skolemize (-1) `orbit' THENA Auto)
THEN Thin (-3)
THEN D 3
THEN ExRepD)
Home
Index