Step
*
1
1
of Lemma
orbit-transitive
.....wf.....
1. T : Type
2. f : T ⟶ T
3. L : T List
4. 0 < ||L||
5. no_repeats(T;L)
6. ∀i:ℕ||L||. ((f L[i]) = if (i =z ||L|| - 1) then L[0] else L[i + 1] fi ∈ T)
7. j : ℕ
8. j < ||L||
9. i : ℕ
10. i < ||L||
⊢ if j ≤z i then i - j else ||L|| + (i - j) fi ∈ ℕ
BY
{ (SplitOnConclITE THEN Auto THEN Auto') }
Latex:
Latex:
.....wf.....
1. T : Type
2. f : T {}\mrightarrow{} T
3. L : T List
4. 0 < ||L||
5. no\_repeats(T;L)
6. \mforall{}i:\mBbbN{}||L||. ((f L[i]) = if (i =\msubz{} ||L|| - 1) then L[0] else L[i + 1] fi )
7. j : \mBbbN{}
8. j < ||L||
9. i : \mBbbN{}
10. i < ||L||
\mvdash{} if j \mleq{}z i then i - j else ||L|| + (i - j) fi \mmember{} \mBbbN{}
By
Latex:
(SplitOnConclITE THEN Auto THEN Auto')
Home
Index