Step
*
of Lemma
permutation-generators4
∀n:ℕ
∀[P:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} ⟶ ℙ]
(P[λx.x]
⇒ (∀f:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} . ∀j:ℕ+n. (P[f]
⇒ P[f o (0, j)]))
⇒ (∀f:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} . P[f]))
BY
{ (InstLemma `permutation-generators3` []
THEN RepeatFor 2 (ParallelLast')
THEN Auto
THEN Try ((BLemma `compose-injections` THEN Auto))
THEN BHyp -1
THEN Auto) }
1
1. n : ℕ
2. [P] : {f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} ⟶ ℙ
3. P[λx.x]
4. ∀f:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} . ∀j:ℕ+n. (P[f]
⇒ P[f o (0, j)])
5. f : {f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)}
6. (∀f:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} . ∀i,j:ℕn. P[f]
⇒ P[f o (i, j)] supposing i < j)
⇒ (∀f:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} . P[f])
7. f1 : {f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)}
8. i : ℕn
9. j : ℕn
10. i < j
11. P[f1]
⊢ P[f1 o (i, j)]
Latex:
Latex:
\mforall{}n:\mBbbN{}
\mforall{}[P:\{f:\mBbbN{}n {}\mrightarrow{} \mBbbN{}n| Inj(\mBbbN{}n;\mBbbN{}n;f)\} {}\mrightarrow{} \mBbbP{}]
(P[\mlambda{}x.x]
{}\mRightarrow{} (\mforall{}f:\{f:\mBbbN{}n {}\mrightarrow{} \mBbbN{}n| Inj(\mBbbN{}n;\mBbbN{}n;f)\} . \mforall{}j:\mBbbN{}\msupplus{}n. (P[f] {}\mRightarrow{} P[f o (0, j)]))
{}\mRightarrow{} (\mforall{}f:\{f:\mBbbN{}n {}\mrightarrow{} \mBbbN{}n| Inj(\mBbbN{}n;\mBbbN{}n;f)\} . P[f]))
By
Latex:
(InstLemma `permutation-generators3` []
THEN RepeatFor 2 (ParallelLast')
THEN Auto
THEN Try ((BLemma `compose-injections` THEN Auto))
THEN BHyp -1
THEN Auto)
Home
Index