Nuprl Lemma : permutation-generators4

n:ℕ
  ∀[P:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)}  ⟶ ℙ]
    (P[λx.x]
     (∀f:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} . ∀j:ℕ+n.  (P[f]  P[f (0, j)]))
     (∀f:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} P[f]))


Proof




Definitions occuring in Statement :  flip: (i, j) inject: Inj(A;B;f) compose: g int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  guard: {T} not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B and: P ∧ Q lelt: i ≤ j < k subtype_rel: A ⊆B so_lambda: λ2x.t[x] nat: so_apply: x[s] prop: int_seg: {i..j-} uimplies: supposing a implies:  Q uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] sq_type: SQType(T) squash: T sq_stable: SqStable(P) compose: g eq_int: (i =z j) nequal: a ≠ b ∈  assert: b bnot: ¬bb bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 flip: (i, j)
Lemmas referenced :  nat_wf identity-injection flip_wf decidable__le lelt_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf full-omega-unsat decidable__lt nat_properties int_seg_properties false_wf flip-injection compose-injections all_wf set_wf less_than_wf inject_wf int_seg_wf member-less_than permutation-generators3 int_formula_prop_eq_lemma intformeq_wf int_subtype_base subtype_base_sq decidable__equal_int sq_stable__inject inject-compose neg_assert_of_eq_int assert-bnot bool_subtype_base bool_cases_sqequal equal_wf eqff_to_assert assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf
Rules used in proof :  cumulativity instantiate voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation approximateComputation unionElimination productElimination independent_pairFormation universeEquality lambdaEquality sqequalRule dependent_set_memberEquality because_Cache natural_numberEquality functionEquality setEquality functionExtensionality applyEquality independent_isectElimination rename setElimination independent_functionElimination isectElimination isect_memberFormation hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut equalitySymmetry equalityTransitivity applyLambdaEquality hyp_replacement imageElimination baseClosed imageMemberEquality promote_hyp equalityElimination

Latex:
\mforall{}n:\mBbbN{}
    \mforall{}[P:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}    {}\mrightarrow{}  \mBbbP{}]
        (P[\mlambda{}x.x]
        {}\mRightarrow{}  (\mforall{}f:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}  .  \mforall{}j:\mBbbN{}\msupplus{}n.    (P[f]  {}\mRightarrow{}  P[f  o  (0,  j)]))
        {}\mRightarrow{}  (\mforall{}f:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}  .  P[f]))



Date html generated: 2018_05_21-PM-00_42_59
Last ObjectModification: 2017_12_11-PM-02_20_47

Theory : list_1


Home Index