Nuprl Lemma : flip_wf
∀[k:ℕ]. ∀[i,j:ℕk].  ((i, j) ∈ ℕk ⟶ ℕk)
Proof
Definitions occuring in Statement : 
flip: (i, j)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
flip: (i, j)
, 
int_seg: {i..j-}
, 
nat: ℕ
Lemmas referenced : 
ifthenelse_wf, 
eq_int_wf, 
int_seg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
isect_memberEquality, 
Error :universeIsType
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[i,j:\mBbbN{}k].    ((i,  j)  \mmember{}  \mBbbN{}k  {}\mrightarrow{}  \mBbbN{}k)
Date html generated:
2019_06_20-PM-01_35_41
Last ObjectModification:
2018_09_26-PM-05_51_11
Theory : list_1
Home
Index