Step
*
2
of Lemma
select-shuffle2
1. T : Type
2. ps : (T × T) List
3. i : ℕ||ps||
4. shuffle(ps)[2 * i] ~ fst(ps[i])
⊢ if ((2 * i) + 1 rem 2 =z 0) then fst(ps[((2 * i) + 1) ÷ 2]) else snd(ps[((2 * i) + 1) ÷ 2]) fi ~ snd(ps[i])
BY
{ (((InstLemma `rem_invariant` [⌜1⌝;⌜i⌝;⌜2⌝]⋅ THENA Auto) THEN Reduce (-1)) THEN AutoSplit) }
1
1. T : Type
2. ps : (T × T) List
3. i : ℕ||ps||
4. shuffle(ps)[2 * i] ~ fst(ps[i])
5. (1 + (i * 2) rem 2) = 1 ∈ ℤ
6. ((2 * i) + 1 rem 2) = 0 ∈ ℤ
⊢ fst(ps[((2 * i) + 1) ÷ 2]) ~ snd(ps[i])
Latex:
Latex:
1. T : Type
2. ps : (T \mtimes{} T) List
3. i : \mBbbN{}||ps||
4. shuffle(ps)[2 * i] \msim{} fst(ps[i])
\mvdash{} if ((2 * i) + 1 rem 2 =\msubz{} 0) then fst(ps[((2 * i) + 1) \mdiv{} 2]) else snd(ps[((2 * i) + 1) \mdiv{} 2]) fi
\msim{} snd(ps[i])
By
Latex:
(((InstLemma `rem\_invariant` [\mkleeneopen{}1\mkleeneclose{};\mkleeneopen{}i\mkleeneclose{};\mkleeneopen{}2\mkleeneclose{}]\mcdot{} THENA Auto) THEN Reduce (-1)) THEN AutoSplit)
Home
Index